Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 8(6)2018 May 28.
Article in English | MEDLINE | ID: mdl-29843427

ABSTRACT

Synthesis and applications of one dimensional (1D) metal nanostructures have attracted much attention. However, one-step synthesis of bimetallic nanowires (NWs) has remained challenging. In this work, we developed a microorganism-mediated, hexadecyltrimethylammonium bromide (CTAB)-directed (MCD) approach to synthesize closely packed and long Au-Ag NWs with the assistance of a continuous injection pump. Characterization results confirmed that the branched Au-Ag alloy NWs was polycrystalline. And the Au-Ag NWs exhibited a strong absorbance at around 1950 nm in the near-infrared (NIR) region, which can find potential application in NIR absorption. In addition, the Au-Ag NWs showed excellent surface-enhanced Raman scattering (SERS) enhancement when 4-mercaptobenzoic acid (MBA) and rhodamine 6G (R6G) were used as probe molecules.

2.
J Colloid Interface Sci ; 433: 204-210, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25168454

ABSTRACT

Based on rapid adsorption and incomplete reduction in Pd (II) ions by yeast, Pichia pastoris (P. pastoris) GS115, the effects of pretreatment on adsorption and reduction of Pd (II) ions and the catalytic properties of Pd NP/P. pastoris catalysts were studied. Interestingly, the results showed that the adsorption ability of the cells for Pd (II) ions was greatly enhanced after they were pretreated with aqueous HCl, aqueous NaOH and methylation of amino group. For the reduction in the adsorbed Pd (II) ions, more slow reduction rates by pretreated P. pastoris cells were displayed compared with the cells without pretreatment. Using the reduction of 4-nitrophenol as a model reaction, the Pd NP/P. pastoris catalysts based on the cells after pretreatment with aqueous HCl, aqueous NaOH and methylation of amino group exhibited higher stability than the unpretreated cells. The enhanced stability of the Pd catalysts can be attributed to smaller Pd NPs, better dispersion of the Pd NPs, and stronger binding forces of the pretreated P. pastoris for preparing the Pd NPs. This work exemplifies enhancing the stability of Pd catalysts through pretreatments.

3.
J Colloid Interface Sci ; 430: 272-82, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24973701

ABSTRACT

Ordered mesoporous carbon (Fe-CMK-3) with iron magnetic nanoparticles was prepared by a casting process via SBA-15 silica as template and anthracene as carbon source, was used as a magnetic adsorbent for the removal of anionic dye Orange II (O II) and cationic dye methylene blue (MB) from aqueous solution. TEM and magnetometer images showed that the iron magnetic nanoparticles were successfully embedded in the interior of the mesoporous carbon. The effect of various process parameters such as temperature (25-45°C), initial concentration (100-500 mg L(-1)) and pH (2-12) were performed. Equilibrium adsorption isotherms and kinetics were also studied. The equilibrium experimental data were analyzed by the Langmuir, Freundlich, Temkin and Redlich-Peterson model. The equilibrium data for two dyes adsorption was fitted to the Langmuir, and the maximum monolayer adsorption capacity for O II and MB dyes were 269 and 316 mg g(-1), respectively. Pseudo-first-order and pseudo-second-order kinetic and intraparticle diffusion model were used to evaluate the adsorption kinetic data. The kinetic data of two dyes could be better described by the pseudo second-order model. Thermodynamic data of the adsorption process were also obtained. It was found that the adsorption process of the two dyes were spontaneous and exothermic.

SELECTION OF CITATIONS
SEARCH DETAIL