Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 23(1): 205, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37081397

ABSTRACT

BACKGROUND: The architecture of inflorescence in crops is a key agronomic feature determining grain yield and thus has been a major target trait of cereal domestication. RESULTS: In this study, we show that a simple spreading panicle change in rice panicle shape, controlled by the Spreading Panicle 9 (SPR9) locus, also has a significant impact on the resistance to rice false smut (RFS). Meanwhile, we mapped a novel spr9 mutant gene between markers Indel5-18 and Indel5-22 encompassing a genomic region of 43-kb with six candidate genes. Through gene prediction and cDNA sequencing, we confirmed that LOC_Os05g38520 is the target gene in the spr9 mutant, which encodes 60 S ribosomal protein L36-2. Further analysis showed that the spr9 mutant is caused by a 1 bp deletion in the first exon that resulted in premature termination. Knockout experiments showed that the SPR9 gene is responsible for the spreading panicle phenotype of the spr9 mutant. Interestingly, the spr9 mutant was found to improve resistance to RFS without affecting major agronomic traits. Taken together, our results revealed that the spr9 allele has good application prospects in rice breeding for disease resistance and panicle improvement. CONCLUSIONS: We report the map-based cloning and functional characterization of SPR9, which encodes a 60 S ribosomal protein that regulates spreading panicles and affects the resistance to false smut in rice.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Plant Breeding , Inflorescence/genetics , Phenotype , Edible Grain
2.
Plants (Basel) ; 12(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36840089

ABSTRACT

Rice false smut (RFS), which is caused by Ustilaginoidea virens (U. virens), has become one of the most devastating diseases in rice-growing regions worldwide. The disease results in a significant yield loss and poses health threats to humans and animals due to producing mycotoxins. In this review, we update the understanding of the symptoms and resistance genes of RFS, as well as the genomics and effectors in U. virens. We also highlight the genetic mechanism of the immune response to RFS. Finally, we analyse and explore the identification method for RFS, breeding for resistance against the disease, and interactions between the effector proteins and resistance (R) proteins, which would be involved in the development of rice disease resistance materials for breeding programmes.

3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36674482

ABSTRACT

Ratooning ability is a key factor that influences the ratoon rice yield in areas where light and temperature are not sufficient for second-season rice. Near-isogenic lines (NILs) are the most powerful tools for the detection and precise mapping of quantitative trait loci (QTLs). In this study, using 176 NILs, we identified a novel QTL for ratooning ability in NIL128. First, we mapped the QTL between the markers Indel12-29 and Indel12-31, which encompass a region of 233 kb. The rice genome annotation indicated the existence of three candidate genes in this region that may be related to ratooning ability. Through gene prediction and cDNA sequencing, we speculated that the target gene of ratooning ability is LOC_Os02g51930 which encodes cytokinin glucosyl transferases (CGTs), hereafter named qRA2. Further analysis showed that qra2 was a 1-bp substitution in the first exon in NIL128, which resulted in the premature termination of qRA2. The results of the knockdown experiment showed that the Jiafuzhan knockdown mutants exhibited the ratooning ability phenotype of NIL128. Interestingly, the qRA2 gene was found to improve ratooning ability without affecting major agronomic traits. These results will help us better understand the genetic basis of rice ratooning ability and provide a valuable gene resource for breeding strong ratoon rice varieties.


Subject(s)
Oryza , Chromosome Mapping , Oryza/genetics , Plant Breeding , Quantitative Trait Loci , Phenotype , Cloning, Molecular
4.
Sci Rep ; 12(1): 14917, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36050368

ABSTRACT

Rice blast is a detrimental rice disease caused by the fungus Magnaporthe oryzae. Here, we identified a resistance gene from the rice cultivar Fuhui 2663 which is resistant to the rice blast isolate KJ201. Through isolated population analyses and sequencing approaches, the candidate gene was traced to chromosome 12. With the use of a map-based cloning strategy, the resistance gene was ultimately mapped to an 80-kb resistance locus region containing the Pita gene. Candidate gene prediction and cDNA sequencing indicated that the target resistance gene in Fuhui 2663 was allelic to Pita, thus being referred to as Pita-Fuhui2663 hereafter. Further analysis showed that the Fuhui 2663 protein had one amino acid change: Ala (A) residue 918 in Pita-Fuhui2663 was replaced by Ser (S) in Pita-S, leading to a significant change in the 3D structure of the Pita-S protein. CRISPR/Cas9 knockout experiments confirmed that Pita-Fuhui2663 is responsible for the resistance phenotype of Fuhui 2663. Importantly, Pita-Fuhui2663 did not affect the main agronomic traits of the variety compared to the Pita gene as verified by knockout experiments, indicative of potential applications of Pita-Fuhui2663 in broader breeding programs. Furthermore, a Pita-Fuhui2663-dCAPS molecular marker with good specificity and high efficiency was developed to facilitate rice breeding for resistance to this devastating disease.


Subject(s)
Magnaporthe , Oryza , Disease Resistance/genetics , Magnaporthe/genetics , Oryza/genetics , Oryza/microbiology , Phenotype , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology
5.
Front Plant Sci ; 13: 878558, 2022.
Article in English | MEDLINE | ID: mdl-35693171

ABSTRACT

Plant height is one of the most important agronomical traits in rice (Oryza sativa L.). Introducing the semidwarf rice in the 1960s significantly enhanced the rice yield potential in Asia. Implementing near-isogenic lines (NILs) is the most powerful tool for the identification and fine mapping of quantitative trait loci (QTLs). In this study, 176 NILs were produced from the crossing and back-crossing of two rice cultivars. Specifically, the indica rice cultivar Jiafuzhan served as a recipient, and the restorer japonica cultivar Hui1586 served as a donor. Using the 176 NILs, we identified a novel major QTL for reduced plant height in the NIL36 line. The qph12 QTL was mapped to a 31 kb genomic region between the indel markers Indel12-29 and Indel12-31. The rice genome annotation indicated the presence of three candidate genes in this genomic region. Through gene prediction and cDNA sequencing, we confirmed that LOC_Os12g40890 (qPH12) is the target gene in the NIL36 line. Further analysis showed that the qph12 QTL is caused by a 1 bp deletion in the first exon that resulted in premature termination of the qPH12. Knockout experiments showed that the qph12 QTL is responsible for the reduced plant height phenotype of the NIL36 line. Although the qph12 gene from the NIL36 line showed a shorter panicle length, fewer spikelets per panicle and a lower plant grain yield, the plant also exhibited a lower plant height. Taken together, our results revealed that the qph12 have good specific application prospects in future rice breeding.

6.
BMC Plant Biol ; 20(1): 561, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33308141

ABSTRACT

BACKGROUND: Rice is a typical monocotyledonous plant and an important cereal crop. The structural units of rice flowers are spikelets and florets, and floral organ development and spike germination affect rice reproduction and yield. RESULTS: In this study, we identified a novel long sterile lemma (lsl2) mutant from an EMS population. First, we mapped the lsl2 gene between the markers Indel7-22 and Indel7-27, which encompasses a 25-kb region. The rice genome annotation indicated the presence of four candidate genes in this region. Through gene prediction and cDNA sequencing, we confirmed that the target gene in the lsl2 mutant is allelic to LONG STERILE LEMMA1 (G1)/ELONGATED EMPTY GLUME (ELE), hereafter referred to as lsl2. Further analysis of the lsl2 and LSL2 proteins showed a one-amino-acid change, namely, the mutation of serine (Ser) 79 to proline (Pro) in lsl2 compared with LSL2, and this mutation might change the function of the protein. Knockout experiments showed that the lsl2 gene is responsible for the long sterile lemma phenotype. The lsl2 gene might reduce the damage induced by spike germination by decreasing the seed germination rate, but other agronomic traits of rice were not changed in the lsl2 mutant. Taken together, our results demonstrate that the lsl2 gene will have specific application prospects in future rice breeding. CONCLUSIONS: The lsl2 gene is responsible for the long sterile lemma phenotype and might reduce the damage induced by spike germination by decreasing the seed germination rate.


Subject(s)
Flowers/growth & development , Genes, Plant , Genes, Recessive , Germination/genetics , Oryza/genetics , Cloning, Molecular , Flowers/genetics , Oryza/metabolism
7.
Stem Cells Int ; 2019: 9071720, 2019.
Article in English | MEDLINE | ID: mdl-31885630

ABSTRACT

Female infertility impacts the quality of life and well-being of affected individuals and couples. Female reproductive diseases, such as primary ovarian insufficiency, polycystic ovary syndrome, endometriosis, fallopian tube obstruction, and Asherman syndrome, can induce infertility. In recent years, translational medicine has developed rapidly, and clinical researchers are focusing on the treatment of female infertility using novel approaches. Owing to the advantages of convenient samples, abundant sources, and avoidable ethical issues, mesenchymal stem cells (MSCs) can be applied widely in the clinic. This paper reviews recent advances in using four types of MSCs, bone marrow stromal cells, adipose-derived stem cells, menstrual blood mesenchymal stem cells, and umbilical cord mesenchymal stem cells. Each of these have been used for the treatment of ovarian and uterine diseases, and provide new approaches for the treatment of female infertility.

8.
Front Plant Sci ; 7: 1737, 2016.
Article in English | MEDLINE | ID: mdl-27933072

ABSTRACT

Common wild rice (Oryza rufipogon Griff.) represents an important resource for rice improvement. Genetic populations provide the basis for a wide range of genetic and genomic studies. In particular, chromosome segment substitution lines (CSSLs) are most powerful tools for the detection and precise mapping of quantitative trait loci (QTLs). In this study, 146 CSSLs were produced; they were derived from the crossing and back-crossing of two rice cultivars: Dongnanihui 810 (Oryza sativa L.), an indica rice cultivar as the recipient, and ZhangPu wild rice, a wild rice cultivar as the donor. First, a physical map of the 146 CSSLs was constructed using 149 molecular markers. Based on this map, the total size of the 147 substituted segments in the population was 1145.65 Mb, or 3.04 times that of the rice genome. To further facilitate gene mapping, heterozygous chromosome segment substitution lines (HCSSLs) were also produced, which were heterozygous in the target regions. Second, a physical map of the 244 HCSSLs was produced using 149 molecular markers. Based on this map, the total length of substituted segments in the HCSSLs was 1683.75 Mb, or 4.47 times the total length of the rice genome. Third, using the 146 CSSLs, two QTLs for plant height, and one major QTL for apiculus coloration were identified. Using the two populations of HCSSLs, the qPa-6-2 gene was precisely mapped to an 88 kb region. These CSSLs and HCSSLs may, therefore, provide powerful tools for future whole genome large-scale gene discovery in wild rice, providing a foundation enabling the development of new rice varieties. This research will also facilitate fine mapping and cloning of quantitative trait genes, providing for the development of superior rice varieties.

SELECTION OF CITATIONS
SEARCH DETAIL
...