Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Resist Updat ; 74: 101079, 2024 May.
Article in English | MEDLINE | ID: mdl-38518727

ABSTRACT

AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease. Chemotherapy based on gemcitabine (GEM) remains the first-line drug for patients with advanced PDAC. However, GEM resistance impairs its therapeutic effectiveness. Therefore, identifying effective therapeutic targets are urgently needed to overcome GEM resistance. METHODS: The clinical significance of Tripartite Motif Containing 29 (TRIM29) was identified by exploring GEO datasets and TCGA database and its potential biological functions were predicted by GSEA analysis. The regulatory axis was established by bioinformatics analysis and validated by mechanical experiments. Then, in vitro and in vivo assays were performed to validate the roles of TRIM29 in PDAC GEM resistance. RESULTS: High TRIM29 expression was associated with poor prognosis of PDAC and functional experiments demonstrated that TRIM29 promoted GEM resistance in PDAC GEM-resistant (GR) cells. Furthermore, we revealed that circRPS29 promoted TRIM29 expression via competitive interaction with miR-770-5p and then activated MEK/ERK signaling pathway. Additionally, both in vitro and in vivo functional experiments demonstrated that circRPS29/miR-770-5p/TRIM29 axis promoted PDAC GEM resistance via activating MEK/ERK signaling pathway. CONCLUSION: Our results identify the significance of the signaling axis, circRPS29/miR-770-5p/TRIM29-MEK/ERK, in PDAC GEM resistance, which will provide novel therapeutic targets for PDAC treatment.


Subject(s)
Carcinoma, Pancreatic Ductal , Drug Resistance, Neoplasm , Gemcitabine , MAP Kinase Signaling System , Pancreatic Neoplasms , Transcription Factors , Animals , Humans , Mice , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , MAP Kinase Signaling System/drug effects , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Prognosis , RNA, Circular/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Xenograft Model Antitumor Assays
2.
Comput Math Methods Med ; 2023: 5424204, 2023.
Article in English | MEDLINE | ID: mdl-36814805

ABSTRACT

Purpose: One subtype of hepatocellular carcinoma (HCC), with cytokeratin 19 expression (CK19+), has shown to be more aggressive and has a poor prognosis. However, CK19+ is determined by immunohistochemical examination using a surgically resected specimen. This study is aimed at establishing a radiomics signature based on preoperative gadoxetic acid-enhanced MRI for predicting CK19 status in HCC. Patients and Methods. Clinicopathological and imaging data were retrospectively collected from patients who underwent hepatectomy between February 2015 and December 2020. Patients who underwent gadoxetic acid-enhanced MRI and had CK19 results of histopathological examination were included. Radiomics features of the manually segmented lesion during the arterial, portal venous, and hepatobiliary phases were extracted. The 10 most reproducible and robust features at each phase were selected for construction of radiomics signatures, and their performance was evaluated by analyzing the area under the curve (AUC). The goodness of fit of the model was assessed by the Hosmer-Lemeshow test. Results: A total of 110 patients were included. The incidence of CK19(+) HCC was 17% (19/110). Alpha fetoprotein was the only significant clinicopathological variable different between CK19(-) and CK19(+) groups. A majority of the selected radiomics features were wavelet filter-derived features. The AUCs of the three radiomics signatures based on arterial, portal venous, and hepatobiliary phases were 0.70 (95% CI: 0.56-0.83), 0.83 (95% CI: 0.73-0.92), and 0.89 (95% CI: 0.82-0.96), respectively. The three radiomics signatures were integrated, and the fusion signature yielded an AUC of 0.92 (95% CI: 0.86-0.98) and was used as the final model for CK19(+) prediction. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of the fusion signature was 0.84, 0.89, 0.88, 0.62, and 0.96, respectively. The Hosmer-Lemeshow test showed a good fit of the fusion signature (p > 0.05). Conclusion: The established radiomics signature based on preoperative gadoxetic acid-enhanced MRI could be an accurate and potential imaging biomarker for HCC CK19(+) prediction.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Keratin-19 , Retrospective Studies , Contrast Media , Magnetic Resonance Imaging/methods , Biomarkers
3.
Psychopharmacology (Berl) ; 237(11): 3215-3224, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32926224

ABSTRACT

RATIONALE: Currently available PDE2 inhibitors have poor brain penetration that limits their therapeutic utility in the treatment of depression. Hcyb1 is a novel selective PDE2 inhibitor that was introduced more lipophilic groups with polar functionality to the scaffold pyrazolopyrimidinone to improve the blood-brain barrier (BBB) penetration. Our previous study suggested that Hcyb1 increased the neuronal cell viability and exhibited antidepressant-like effects, which were parallel to the currently available PDE2 inhibitor Bay 60-7550. OBJECTIVES: The present study investigated whether Hcyb1 protected HT-22 cells against corticosterone-induced neurotoxicity and produced antidepressant-like effects in behavioral tests in stressed mice. METHODS: The neuroprotective effects of Hcyb1 against corticosterone-induced cell lesion were examined by cell viability (MTS) assay. The enzyme-linked immunosorbent assay (ELISA) and immunoblot analysis were used to determine the levels of cAMP or cGMP and expression of pCREB or BDNF, respectively, in the corticosterone-treated HT-22 cells. The antidepressant-like effects of Hcyb1 were determined in the tail suspension and novelty suppressed feeding tests in stressed mice. RESULTS: In the cell-based assay, Hcyb1 significantly increased cell viability of HT-22 cells against corticosterone-induced neurotoxicity in a time- and dose-dependent manner. Hcyb1 also rescued corticosterone-induced decreases in both cGMP and cAMP levels, pCREB/CREB and BDNF expression. These protective effects of Hcyb1 were prevented by pretreatment with either the PKA inhibitor H89 or the PKG inhibitor KT5823. Moreover, Hcyb1 reversed acute stress-induced increases in immobility time and the latency to feed in the tail suspension and novelty suppressed feeding tests, respectively, which were prevented by pretreatment with H89 or KT5823. CONCLUSION: These findings provide evidence that the neuroprotective effects of Hcyb1 are mediated by PDE2-dependent cAMP/cGMP signaling.


Subject(s)
Antidepressive Agents/therapeutic use , Corticosterone/toxicity , Cyclic Nucleotide Phosphodiesterases, Type 2/antagonists & inhibitors , Depression/drug therapy , Neurotoxicity Syndromes/drug therapy , Phosphodiesterase Inhibitors/therapeutic use , Animals , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Depression/metabolism , Depression/psychology , Hindlimb Suspension/adverse effects , Hindlimb Suspension/psychology , Male , Mice , Mice, Inbred ICR , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/psychology , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL