Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
Cancer Control ; 31: 10732748241235468, 2024.
Article in English | MEDLINE | ID: mdl-38410859

ABSTRACT

OBJECTIVE: This study sought to explore the clinical value of matrix metalloproteinases 12 (MMP12) in multiple cancers, including lung adenocarcinoma (LUAD). METHODS: Using >10,000 samples, this retrospective study demonstrated the first pan-cancer analysis of MMP12. The expression of MMP12 between cancer groups and their control groups was analyzed using Wilcoxon rank-sum tests. The clinical significance of MMP12 expression in multiple cancers was assessed using receiver operating characteristic curves, Kaplan-Meier curves, and univariate Cox analysis. A further LUAD-related analysis based on 4565 multi-center and in-house samples was performed to verify the findings regarding MMP12 in pan-cancer analysis partly. RESULTS: MMP12 mRNA is highly expressed in 13 cancers compared to their controls, and the MMP12 protein level is elevated in some of these cancers (e.g., colon adenocarcinoma) (P < .05). MMP12 expression makes it feasible to distinguish 21 cancer tissues from normal tissues (AUC = 0.86). A high MMP12 expression is a prognosis risk factor in eight cancers, such as adrenocortical carcinoma (hazard ratio >1, P < .05). The elevated MMP12 expression is also a prognosis protective factor in breast-invasive carcinoma and colon adenocarcinoma (hazard ratio <1, P < .05). Some pan-cancer findings regarding MMP12 are verified in LUAD-MMP12 expression is upregulated in LUAD at both the mRNA and protein levels (P < .05), has the potential to distinguish LUAD with considerable accuracy (AUC = .91), and plays a risk prognosis factor for patients with the disease (P < .05). CONCLUSIONS: MMP12 is highly expressed in most cancers and may serve as a novel biomarker for the prediction and prognosis of numerous cancers.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Breast Neoplasms , Colonic Neoplasms , Lung Neoplasms , Humans , Female , Matrix Metalloproteinase 12/genetics , Adenocarcinoma/diagnosis , Adenocarcinoma/genetics , Prognosis , Retrospective Studies , Adenocarcinoma of Lung/genetics , RNA, Messenger/genetics , Lung Neoplasms/genetics
2.
Cancer Med ; 12(12): 13438-13454, 2023 06.
Article in English | MEDLINE | ID: mdl-37184260

ABSTRACT

BACKGROUND AND AIM: The biological functions and clinical implications of lysophosphatidylcholine acyltransferase 1 (LPCAT1) remain unclarified in gastric cancer (GC). The aim of the current study was to explore the possible clinicopathological significance of LPCAT1 and its perspective mechanism in GC tissues. MATERIALS AND METHODS: The protein expression and mRNA levels of LPCAT1 were detected from in-house immunohistochemistry and public high-throughput RNA arrays and RNA sequencing. To have a comprehensive understanding of the clinical value of LPCAT1 in GC, all enrolled data were integrated to calculate the expression difference and standard mean difference (SMD). The biological mechanism of LPCAT1 in GC was confirmed by computational biology and in vitro experiments. Migration and invasion assays were also conducted to confirm the effect of LPCAT1 in GC. RESULTS: Both protein and mRNA expression levels of LPCAT1 in GC were remarkably higher than those in noncancerous controls. Comprehensively, the SMD of LPCAT1 mRNA was 1.11 (95% CI = 0.86-1.36) in GC, and the summarized AUC was 0.85 based on 15 datasets containing 1727 cases of GC and 940 cases of non-GC controls. Moreover, LPCAT1 could accelerate the invasion and migration of GC by boosting the neutrophil degranulation pathway and disturbing the immune microenvironment. CONCLUSION: An increased level of LPCAT1 may promote the progression of GC.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , 1-Acylglycerophosphocholine O-Acyltransferase/genetics , 1-Acylglycerophosphocholine O-Acyltransferase/metabolism , Cell Proliferation , Acyltransferases , Computational Biology , RNA, Messenger/genetics , Tumor Microenvironment
3.
Pharmgenomics Pers Med ; 15: 999-1017, 2022.
Article in English | MEDLINE | ID: mdl-36536885

ABSTRACT

Background: Radiation resistance is a challenge that limits the therapeutic benefit of colorectal cancer (CRC) treatment, but the mechanism underlying CRC radiation resistance remains unclear. Andrographolide shows a broad-spectrum anti-tumor effect in various malignancies, including CRC, its effect and how it functions in CRC initiation, and radiation have not been established. This study aimed to explore the mechanism of CRC radiation resistance and the potential mechanisms of andrographolide on CRC radiation. Methods: Two acquired radioresistant cell lines were established and high throughput sequencing was employed to screen out the differentially expressed genes. The expression of AZGP1, which was upregulated in the acquired radioresistant tissues, was verified by microarray data recomputing. The common targets of andrographolide, CRC initiation, and radiation resistance were obtained, and the corresponding functional enrichment and pathway analysis were performed. The interaction between AZGP1 and andrographolide was investigated using molecular docking. Results: AZGP1 was upregulated in both the radioresistant cell model and microarray data. Moreover, AZGP1 was upregulated in cancerous colorectal tissue and displayed a tendency toward elevated expression in patients with an unfavorable prognosis. AZGP1 was identified as the common target of andrographolide, colorectal cancer initiation, and radiotherapy resistance. Ultimately, the protein structure of AZGP1 proved to be closely intertwined with the crystal texture of andrographolide. Conclusion: AZGP1 is recognized as a crucial factor for both CRC initiation and radioresistance. Andrographolide may affect the radioresistance of CRC via the targeting of AZGP1. Thus, the combination of andrographolide and AZGP1 intervention might be a promising strategy for improving the treatment benefit of CRC radiotherapy.

4.
Proc Natl Acad Sci U S A ; 119(30): e2101384119, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35858402

ABSTRACT

During its 6,300-km course from the Tibetan Plateau to the ocean, the Yangtze River is joined by two large lakes: Dongting Lake and Poyang Lake. We explain why these lakes exist. Deglaciation forced the ocean adjacent to the Yangtze mouth to rise ∼120 m. This forced a wave of rising water surface elevation and concomitant bed aggradation upstream. While aggradation attenuated upstream, the low bed slope of the Middle-Lower Yangtze River (∼2 × 10-5 near Wuhan) made it susceptible to sea level rise. The main stem, sourced at 5,054 m above sea level, had a substantial sediment load to "fight" against water surface level rise by means of bed aggradation. The tributaries of the Middle-Lower Yangtze have reliefs of approximately hundreds of meters, and did not have enough sediment supply to fill the tributary accommodation space created by main-stem aggradation. We show that the resulting tributary blockage likely gave rise to the lakes. We justify this using field data and numerical modeling, and derive a dimensionless number capturing the critical rate of water surface rise for blockage versus nonblockage.

5.
Biomark Med ; 16(9): 693-715, 2022 06.
Article in English | MEDLINE | ID: mdl-35543030

ABSTRACT

Aim: To investigate the clinical role of transmembrane protease serine 3 (TMPRSS3) in radioresistance and prognosis of colorectal cancer (CRC). Methods: Standardized mean difference (SMD) and summary area under the curve (AUC) of TMPRSS3 were calculated by combining all available high-throughput data globally. The prognostic significance of TMPRSS3 was determined by Kaplan-Meier and Cox regression analyses. Results:TMPRSS3 was remarkably upregulated in 198 CRC radioresistant cases compared with nonradioresistance (SMD = 0.38, AUC = 0.71). Overexpression of TMPRSS3 was observed in 1601 CRC patients compared with control subjects without CRC. TMPRSS3 was a risk factor for disease-free survival of CRC with the summarized hazard ratio 1.28. Conclusion: TMPRSS3 contributes to the radioresistance and unfavorable prognosis of CRC.


Subject(s)
Colorectal Neoplasms , RNA, Messenger , Serine Endopeptidases , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/radiotherapy , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Prognosis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Radiation Tolerance , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Up-Regulation
6.
Dis Markers ; 2022: 7962220, 2022.
Article in English | MEDLINE | ID: mdl-35251377

ABSTRACT

BACKGROUND: This study was aimed at elucidating the molecular biological mechanisms of microRNA-1 (miR-1) in nasopharyngeal carcinoma (NPC). METHOD: In this study, we performed a pooled analysis of miR-1 expression data derived from public databases, such as GEO, ArrayExpress, TCGA, and GTEx. The miRWalk 2.0 database, combined with the mRNA microarray datasets, was used to screen the target genes, and the genes were then subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis using the DAVID 6.8 database. We then used the STRING 11.0 database and Cytoscape 3.80 software to construct a protein-protein interaction (PPI) network for screening hub genes. Immunohistochemistry (IHC) was further used to validate the expression of hub genes. Finally, potential therapeutic agents for NPC were screened by the Connectivity Map (cMap) database. RESULTS: Pooled analysis showed that miR-1 expression was significantly decreased in NPC (SMD = -0.57; P < 0.05). The summary receiver operating characteristic curve suggested that miR-1 had a good ability to distinguish cancerous tissues from noncancerous tissues (AUC = 0.78). The results of GO analysis focused on mitotic nuclear division, DNA replication, cell division, cell adhesion, extracellular space, kinesin complex, and extracellular matrix (ECM) structural constituent. The KEGG analysis suggested that the target genes played a role in key signaling pathways, such as cell cycle, focal adhesion, cytokine-cytokine receptor interaction, ECM-receptor interaction, and PI3K/Akt signaling pathway. The PPI network suggested that cyclin-dependent kinase 1 (CDK1) was the hub gene, and the CDK1 protein was subsequently confirmed to be significantly upregulated in NPC tissues by IHC. Finally, potential therapeutic drugs, such as masitinib, were obtained by the cMap database. CONCLUSION: miR-1 may play a vital part in NPC tumorigenesis and progression by regulating focal adhesion kinase to participate in cell mitosis, regulating ECM degradation, and affecting the PI3K/Akt signaling pathway. miR-1 has the potential to be a therapeutic target for NPC.


Subject(s)
Computational Biology , Computer Simulation , Immunohistochemistry , MicroRNAs/metabolism , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Neoplasms/metabolism , Down-Regulation , Female , Gene Ontology , Humans , Male , MicroRNAs/genetics , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Interaction Maps/genetics , Signal Transduction/genetics
7.
Cancer Med ; 11(5): 1396-1412, 2022 03.
Article in English | MEDLINE | ID: mdl-34984849

ABSTRACT

BACKGROUND: Although branched chain amino acid transaminase 1 (BCAT1) has been identified to play an essential role in multiple tumors, no studies on its role in pan-cancer have been consulted before. METHODS: The study comprehensively analyzes the expression, potential mechanisms, and clinical significance of BCAT1 in pan-cancer through utilizing 16,847 samples, providing novel clues for the treatment of cancers. A Kruskal-Wallis test and the Wilcoxon rank-sum and signed-rank tests were applied to investigate diverse BCAT1 expression between various groups (e.g., cancer tissues versus normal tissues). Spearman's rank correlation coefficient was used in all correlation analyses in the study. Cox analyses and Kaplan-Meier curves were utilized to identify the prognosis significance of BCAT1 expression in cancers. The significance of BCAT1 expression in differentiating cancer and non-cancer tissues was explored via the area under the receiver operating characteristic curves (AUC). RESULTS: The differential expression of BCAT1 was detected in various cancers (p < 0.05), which is relevant to some DNA methyltransferases expression. BCAT1 expression was associated with mismatch repair gene expression, immune checkpoint inhibitors expression, microsatellite instability, and tumor mutational burden in some cancers, indicating its potential in immunotherapy. BCAT1 expression showed prognosis significance and played a risk role in multiple cancers (hazard ratio > 0, p < 0.05). BCAT1 expression also demonstrated conspicuous ability to distinguish some cancers tissues from their normal tissues (AUC > 0.7), indicating its potential to detect cancers. Further analyses on head and neck squamous cell carcinoma certified upregulated BCAT1 expression at both mRNA and protein levels in this disease based on in-house tissue microarrays and multicenter datasets. CONCLUSIONS: For the first time, the research comprehensively demonstrates the overexpression of BCAT1 in pan-cancer, which improves the understanding of the pathogenesis of BCAT1 in pan-cancer. Upregulated BCAT1 expression represented a poor prognosis for cancers patients, and it serves as a potential marker for cancer immunotherapy.


Subject(s)
Head and Neck Neoplasms , Transaminases , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Humans , Prognosis , Risk Factors , Transaminases/genetics
8.
Bioengineered ; 12(1): 1627-1641, 2021 12.
Article in English | MEDLINE | ID: mdl-33949293

ABSTRACT

Hepatocellular carcinoma (HCC) is a leading cause of mortality in cancer patients, but the association between miR-125b-2-3p and the onset and prognosis of HCC has not been reported in previous studies; thus, the clinicopathological implications of miR-125b-2-3p in HCC require elaboration. To examine the expression of miR-125b-2-3p in HCC, both in-house RT-qPCR and public datasets were used to calculate the standard mean difference (SMD) and the summary receiver operating characteristic (sROC). MiR-125b-2-3p was markedly lower in HCC than in non-tumor tissue as assessed by the in-house RT-qPCR which was confirmed by the integrative analysis showing the SMD being -0.69 and the area under the curve (AUC) being 0.84 based on 1,233 cases of HCC and 630 cases of non-HCC controls. To gain a overview of the clinical value of miR-125b-2-3p in HCC, all possible datasets were integrated, and lower miR-125b-2-3p levels could lead to poorer differentiation and a more advanced clinical stage of HCC. The hazard ratio (HR) of miR-125b-2-3p was also calculated using a Cox proportional hazards model, and the miR-125b-2-3p level could act as an protective indication for the survival with the HR being 0.74 based on 586 cases of HCC. Furthermore, the effect of nitidine chloride (NC), a natural bioactive phytochemical alkaloid, on the regulation of miR-125b-2-3p and its potential targets was also investigated. The miR-125b-2-3p level was increased after NC treatment, while the expression of its potential target PRKCA was reduced. Above all, a low-expressed level of miR-125b-2-3p plays a tumor suppressive role in HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , MicroRNAs/genetics , Carcinoma, Hepatocellular/pathology , Female , Gene Expression Profiling , Humans , Liver Neoplasms/pathology , Male , MicroRNAs/metabolism , Prognosis , ROC Curve , Risk Factors
9.
Biochem Pharmacol ; 188: 114562, 2021 06.
Article in English | MEDLINE | ID: mdl-33857489

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) plays an important role in diabetic nephropathy (DN). Ubiquitin-specific protease 9X (USP9X/FAM) is closely linked to TGF-ß and fibrosis signaling pathway. However, it remains unknown whether USP9X is involved in the process of EMT in DN. Our previous study has shown that connexin 43 (Cx43) activation attenuated the development of diabetic renal tubulointerstitial fibrosis (RIF). Here, we showed that USP9X is a novel negative regulator of EMT and the potential mechanism is related to the deubiquitination and degradation of Cx43. To explore the potential regulatory mechanism of USP9X, the expression and activity of USP9X were studied by CRISPR/Cas9-based synergistic activation mediator (SAM) system, short hairpin RNAs, and selective inhibitor. The following findings were observed: (1) Expression of USP9X was down-regulated in the kidney tissue of db/db diabetic mice; (2) overexpression of USP9X suppressed high glucose (HG)-induced expressions of EMT markers and extra cellular matrix (ECM) in NRK-52E cells; (3) depletion of USP9X further aggravated EMT process and ECM production in NRK-52E cells; (4) USP9X deubiquitinated Cx43 and suppressed its degradation to regulate EMT process; (5) USP9X deubiquitinated Cx43 by directly binding to the C-terminal Tyr286 of Cx43. The current study determined the protective role of USP9X in the process of EMT and the molecular mechanism clarified that the protective effects of USP9X on DN were associated with the deubiquitination of Cx43.


Subject(s)
Connexin 43/metabolism , Epithelial-Mesenchymal Transition/drug effects , Glucose/toxicity , Kidney Tubules/metabolism , Ubiquitin Thiolesterase/biosynthesis , Animals , Connexin 43/genetics , Deubiquitinating Enzymes/biosynthesis , Deubiquitinating Enzymes/genetics , Dose-Response Relationship, Drug , Epithelial-Mesenchymal Transition/physiology , HEK293 Cells , Humans , Kidney Tubules/cytology , Kidney Tubules/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Rats , Ubiquitin Thiolesterase/genetics
10.
Dose Response ; 19(4): 15593258211058981, 2021.
Article in English | MEDLINE | ID: mdl-34987334

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) represents the third most common malignant tumor in the worldwide. Radiotherapy is the common therapeutic treatment for CRC, but radiation resistance is often encountered. ChIP-seq of Histone H3K27 acetylation (H3K27ac) has revealed enhancers that play an important role in CRC. This study examined the relationship between an active CRC enhancer and claudin-1 (CLDN1), and its effect on CRC radiation resistance. METHODS: The target CRC genes of active enhancers were obtained from public H3K27ac ChIP-seq, and the genes highly expressed in radio-resistant CRC were screened and intersected with enhancer-driven genes. The clinical roles of CLDN1 in radiation resistance were examined using the t-test, standard mean deviation (SMD), summary receiver operating characteristic curve and Kaplan-Meier curves. The co-expressed genes of CLDN1 were calculated using Pearson Correlation analysis, and Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes and Gene Set Variation Analysis (GSVA) analyses were used to examine the molecular mechanisms of CLDN1. RESULTS: Total 13 703 CRC genes were regulated by enhancers using 58 H3K27ac ChIP-seq. Claudin-1 (CLDN1) was enhancer-driven and notably up-regulated in CRC tissues compared to non-CRC controls, with a SMD of 3.45 (95 CI % = .56-4.35). CLDN1 expression was increased in radiation-resistant CRC with a SMD of .42 (95% CI = .16-.68) and an area under the curve of .74 (95% CI = .70-.77). The cell cycle and immune macrophage levels were the most significant pathways associated with CLDN1. CONCLUSION: CLDN1 as an enhancer-regulated gene that can boost radiation resistance in patients with CRC.

11.
Acta Pharmacol Sin ; 41(12): 1587-1596, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32724174

ABSTRACT

We previously found that polydatin could attenuate renal oxidative stress in diabetic mice and improve renal fibrosis. Recent evidence shows that NADPH oxidase 4 (Nox4)-derived reactive oxygen species (ROS) contribute to inflammatory and fibrotic processes in diabetic kidneys. In this study we investigated whether polydatin attenuated renal fibrosis by regulating Nox4 in vitro and in vivo. In high glucose-treated rat glomerular mesangial cells, polydatin significantly decreased the protein levels of Nox4 by promoting its K48-linked polyubiquitination, thus inhibited the production of ROS, and eventually decreasing the expression of fibronectin (FN) and intercellular adhesion molecule-1 (ICAM-1), the main factors that exacerbate diabetic renal fibrosis. Overexpression of Nox4 abolished the inhibitory effects of polydatin on FN and ICAM-1 expression. In addition, the expression of Connexin32 (Cx32) was significantly decreased, which was restored by polydatin treatment. Cx32 interacted with Nox4 and reduced its protein levels. Knockdown of Cx32 abolished the inhibitory effects of polydatin on the expression of FN and ICAM-1. In the kidneys of streptozocin-induced diabetic mice, administration of polydatin (100 mg·kg-1·d-1, ig, 6 days a week for 12 weeks) increased Cx32 expression and reduced Nox4 expression, decreased renal oxidative stress levels and the expression of fibrotic factors, eventually attenuating renal injury and fibrosis. In conclusion, polydatin promotes K48-linked polyubiquitination and degradation of Nox4 by restoring Cx32 expression, thereby decreasing renal oxidative stress levels and ultimately ameliorating the pathological progress of diabetic renal fibrosis. Thus, polydatin reduces renal oxidative stress levels and attenuates diabetic renal fibrosis through regulating the Cx32-Nox4 signaling pathway.


Subject(s)
Connexins/metabolism , Fibrosis/drug therapy , Glucosides/therapeutic use , Kidney/drug effects , NADPH Oxidase 4/metabolism , Signal Transduction/drug effects , Stilbenes/therapeutic use , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Fibronectins/metabolism , Fibrosis/etiology , Fibrosis/metabolism , Fibrosis/pathology , Intercellular Adhesion Molecule-1/metabolism , Kidney/metabolism , Kidney/pathology , Male , Mice, Inbred C57BL , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Ubiquitination , Gap Junction beta-1 Protein
12.
Article in English | MEDLINE | ID: mdl-31618861

ABSTRACT

The water quality of the Mun River, one of the largest tributaries of the Mekong River and an important agricultural area in Thailand, is investigated to determine its status, identify spatiotemporal variations and distinguish the potential causes. Water quality dataset based on monitoring in the last two decades (1997-2017) from 21 monitoring sites distributed across the basin were analyzed using seasonal Kendall test and water quality index (WQI) method. The Kendall test shows significant declines in fecal coliform bacteria (FCB) and ammonia (NH3) in the upper reaches and increases in nitrate (NO3) and NH3 in the lower reaches. Strong temporal and spatial fluctuations were observed in both the concentrations of individual parameters and the WQI values. Seasonal variation of water quality was observed at each monitoring site. WQI values in August (flood season) were generally among the lowest, compared to other seasons. Spatially, sites in the upper reaches generally having lower WQI values than those in the lower reaches. Excessive phosphorus is the primary cause of water quality degradation in the upper reaches, while nitrogen is the primary parameter for water quality degradation in the lower reaches. Urban built-up land is an important "source" of water pollutants in the lower basin, while agricultural land plays a dual role, affecting across the basin.


Subject(s)
Environmental Monitoring/methods , Rivers , Water Quality , Agriculture , Nitrogen/analysis , Phosphorus/analysis , Seasons , Thailand , Water Pollutants/analysis , Water Pollutants, Chemical/analysis
13.
Acta Pharmacol Sin ; 39(8): 1294-1304, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29323338

ABSTRACT

Ulinastatin (UTI) is a broad-spectrum serine protease inhibitor isolated and purified from human urine with strong anti-inflammatory and cytoprotective actions, which is widely used for the treatment of various diseases, such as pancreatitis and sepsis. Although the therapeutic effects of UTI are reported to be associated with a variety of mechanisms, the signaling pathways mediating the anti-inflammatory action of UTI remain to be elucidated. In the present study we carried out a systematic study on the anti-inflammatory and anti-oxidative mechanisms of UTI and their relationships in LPS-treated RAW264.7 cells. Pretreatment with UTI (1000 and 5000 U/mL) dose-dependently decreased the mRNA levels of pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α, iNOS) and upregulated anti-inflammatory cytokines (IL-10 and TGF-ß1) in LPS-treated RAW264.7 cells. UTI pretreatment significantly inhibited the nuclear translocation of NF-κB by preventing the degradation of IκB-α. UTI pretreatment only markedly inhibited the phosphorylation of JNK at Thr183, but it did not affect the phosphorylation of JNK at Tyr185, ERK-1/2 and p38 MAPK; JNK was found to function upstream of the IκB-α/NF-κB signaling pathway. Furthermore, UTI pretreatment significantly suppressed LPS-induced ROS production by activating PI3K/Akt pathways and the nuclear translocation of Nrf2 via promotion of p62-associated Keap1 degradation. However, JNK was not involved in mediating the anti-oxidative stress effects of UTI. In summary, this study shows that UTI exerts both anti-inflammatory and anti-oxidative effects by targeting the JNK/NF-κB and PI3K/Akt/Nrf2 pathways.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Glycoproteins/pharmacology , Inflammation/drug therapy , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Serine Proteinase Inhibitors/pharmacology , Signal Transduction/drug effects , Animals , Antioxidants/pharmacology , Cytokines/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Mice , NF-E2-Related Factor 2/metabolism , NF-KappaB Inhibitor alpha/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RAW 264.7 Cells , Transcription Factor RelA/metabolism
14.
Sci Total Environ ; 607-608: 294-303, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28692899

ABSTRACT

Water allocation is facing profound challenges due to climate change uncertainties. To identify adaptive water allocation strategies that are robust to climate change uncertainties, a model framework combining many-objective robust decision making and biophysical modeling is developed for large rivers. The framework was applied to the Pearl River basin (PRB), China where sufficient flow to the delta is required to reduce saltwater intrusion in the dry season. Before identifying and assessing robust water allocation plans for the future, the performance of ten state-of-the-art MOEAs (multi-objective evolutionary algorithms) is evaluated for the water allocation problem in the PRB. The Borg multi-objective evolutionary algorithm (Borg MOEA), which is a self-adaptive optimization algorithm, has the best performance during the historical periods. Therefore it is selected to generate new water allocation plans for the future (2079-2099). This study shows that robust decision making using carefully selected MOEAs can help limit saltwater intrusion in the Pearl River Delta. However, the framework could perform poorly due to larger than expected climate change impacts on water availability. Results also show that subjective design choices from the researchers and/or water managers could potentially affect the ability of the model framework, and cause the most robust water allocation plans to fail under future climate change. Developing robust allocation plans in a river basin suffering from increasing water shortage requires the researchers and water managers to well characterize future climate change of the study regions and vulnerabilities of their tools.

15.
Drug Des Devel Ther ; 10: 2341-51, 2016.
Article in English | MEDLINE | ID: mdl-27540277

ABSTRACT

BACKGROUND: Carotid artery stenosis is a major risk factor for ischemic stroke. Although carotid angioplasty and stenting using an embolic protection device has been introduced as a less invasive carotid revascularization approach, in-stent restenosis limits its long-term efficacy and safety. The objective of this study was to test the anti-restenosis effects of local stent-mediated delivery of the A20 gene in a porcine carotid artery model. MATERIALS AND METHODS: The pCDNA3.1EHA20 was firmly attached onto stents that had been collagen coated and treated with N-succinimidyl-3-(2-pyridyldithiol)propionate solution and anti-DNA immunoglobulin fixation. Anti-restenosis effects of modified vs control (the bare-metal stent and pCDNA3.1 void vector) stents were assessed by Western blot and scanning electron microscopy, as well as by morphological and inflammatory reaction analyses. RESULTS: Stent-delivered A20 gene was locally expressed in porcine carotids in association with significantly greater extent of re-endothelialization at day 14 and of neointimal hyperplasia inhibition at 3 months than stenting without A20 gene expression. CONCLUSION: The A20-gene-eluting stent inhibits neointimal hyperplasia while promoting re-endothelialization and therefore constitutes a novel potential alternative to prevent restenosis while minimizing complications.


Subject(s)
Coronary Restenosis/therapy , Disease Models, Animal , Drug-Eluting Stents , Animals , Coronary Restenosis/prevention & control , Swine
16.
Environ Toxicol Pharmacol ; 46: 17-26, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27414742

ABSTRACT

Cadmium (Cd) and lead (Pb) are both highly toxic metals in environments. However the toxicological mechanism is not clear. In this study, the aplysiid, Notarcus leachii cirrosus Stimpson (NLCS) was subjected to Cd (NLCS-Cd) or Pb (NLCS-Pb). The cerebral ganglion of NLCS was investigated with a transmission electron microscope. Next the differential proteins were separated and identified using proteomic approaches. Eighteen protein spots in NLCS-Cd and seventeen protein spots in NLCS-Pb were observed to be significantly changed. These protein spots were further excised in gels and identified. A hypothetical pathway was drawn to show the correlation between the partially identified proteins. The results indicated that damage to the cerebral ganglion was follows: cell apoptosis, lysosomes proliferation, cytoskeleton disruption, and oxidative stress. These phenomena and data indicated potential biomarkers for evaluating the contamination levels of Cd and Pb. This study provided positive insights into the mechanisms of Cd and Pb toxicity.


Subject(s)
Aplysia/drug effects , Cadmium/toxicity , Ganglia, Invertebrate/ultrastructure , Lead/toxicity , Proteins/metabolism , Animals , Aplysia/metabolism , Biomarkers/analysis , Biomarkers/metabolism , Cadmium/pharmacokinetics , Ecotoxicology/methods , Electrophoresis, Gel, Two-Dimensional , Ganglia, Invertebrate/drug effects , Ganglia, Invertebrate/metabolism , Lead/pharmacokinetics , Microscopy, Electron, Transmission , Proteins/analysis , Proteomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Water Pollutants, Chemical/pharmacokinetics , Water Pollutants, Chemical/toxicity
17.
Int J Clin Exp Pathol ; 8(6): 6434-41, 2015.
Article in English | MEDLINE | ID: mdl-26261519

ABSTRACT

Chemoresistance is a major obstacle to successful chemotherapy for glioma. Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus and possesses antitumorigenic properties. In the present study, we investigated the anti-proliferative effects of formononetin on human glioma cells, and further elucidated the molecular mechanism underlying the anti-tumor property. We found that formononetin enhanced doxorubicin cytotoxicity in glioma cells. Combined treatment with formononetin reversed the doxorubicin-induced epithelial-mesenchymal transition (EMT) in tumor cells. Moreover, we found that formononetin treatment significantly decreased the expression of HDAC5. Overexpression of HDAC5 diminished the suppressive effects of formononetin on glioma cell viability. Furthermore, knockdown of HDAC5 by siRNA inhibited the doxorubicin-induced EMT in glioma cells. Taken together, these results demonstrated that formononetin-combined therapy may enhance the therapeutic efficacy of doxorubicin in glioma cells by preventing EMT through inhibition of HDAC5.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Brain Neoplasms/drug therapy , Doxorubicin/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Glioma/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Isoflavones/pharmacology , Brain Neoplasms/enzymology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Dose-Response Relationship, Drug , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Glioma/enzymology , Glioma/genetics , Glioma/pathology , Histone Deacetylases/genetics , Humans , RNA Interference , Signal Transduction/drug effects , Transfection
18.
Water Sci Technol ; 71(12): 1893-900, 2015.
Article in English | MEDLINE | ID: mdl-26067511

ABSTRACT

Soil erosion and land desertification are the most serious environmental problems globally. This study investigated the changes in streamflow and sediment load from 1964 to 2012 in the Ten Great Gullies area of the Upper Yellow River. Tests for gradual trends (Mann-Kendall test) and abrupt changes (Pettitt test) identify that significant declines in streamflow and sediment load occurred in 1997-1998 in two typical gullies. A comparison of climatic variability before and after the change points shows no statistically significant trends in annual precipitation and potential evapotranspiration. Human activities have been very active in the region and during 1990-2010, 146.01 and 197.62 km2 of land were converted, respectively, to forests and grassland, with corresponding increases of 87.56 and 77.05%. In addition, a large number of check dams have been built up in the upper reaches of the ten gullies. These measures were likely responsible for the significant decline in the annual streamflow and sediment load over the last 49 years.


Subject(s)
Climate Change , Geologic Sediments , Human Activities , Rivers , China , Conservation of Natural Resources , Humans , Soil , Water Movements , Water Pollutants, Chemical
19.
Fish Shellfish Immunol ; 44(2): 555-65, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25827626

ABSTRACT

Methamidophos (MAP), an organophosphorus pesticide used around the world, has been associated with a wide spectrum of toxic effects on organisms in the environment. In this study, the flounder Paralichthys olivaceus was subjected to 10 mg/L MAP for 72 h and 144 h, and the morphological and proteomic changes in the brain were observed, analyzed and compared with those in the non-exposed control group. Under the light microscope and transmission electron microscope, MAP had evidently induced changes in or damage to the flounder tissues. Gas chromatography analysis demonstrated that the MAP residues were significantly accumulated in the flounder brain tissues. Proteomic changes in the brain tissue were revealed using two-dimensional gel electrophoresis and 27 protein spots were observed to be significantly changed by MAP exposure. The results indicated that the regulated proteins were involved in immune and stress responses, protein biosynthesis and modification, signal transduction, organismal development, and 50% of them are protease. qRT-PCR was used to further detect the corresponding change of transcription. These data may be beneficial to understand the molecular mechanism of MAP toxicity in flounder, be very useful for MAP-resistance screening in flounder culture. According to our results and analyzing, heat shock protein 90 (HSP90) and granzyme K (GzmK) had taken important part in immune response to MAP-stress and could be biomarkers for MAP-stress in flounder.


Subject(s)
Brain/metabolism , Flounder/genetics , Gene Expression Regulation/drug effects , Granzymes/metabolism , HSP90 Heat-Shock Proteins/metabolism , Organothiophosphorus Compounds/pharmacology , Animals , Biomarkers/metabolism , Brain/ultrastructure , Chromatography, Gas/veterinary , Electrophoresis, Gel, Two-Dimensional/veterinary , Flounder/immunology , Microscopy, Electron, Transmission/veterinary , Time Factors
20.
Endocrinology ; 156(1): 268-79, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25375034

ABSTRACT

We previously demonstrated that advanced glycation-end products (AGEs) promote the pathological progression of diabetic nephropathy by decreasing silent information regulator 2-related protein 1 (Sirt1) expression in glomerular mesangial cells (GMCs). Here, we investigated whether AGEs-receptor for AGEs (RAGE) system down-regulated Sirt1 expression through ubiquitin-proteasome pathway and whether Sirt1 ubiquitination affected fibronectin (FN) and TGF-ß1, 2 fibrotic indicators in GMCs. Sirt1 was polyubiquitinated and subsequently degraded by proteasome. AGEs increased Sirt1 ubiquitination and proteasome-mediated degradation, shortened Sirt1 half-life, and promoted FN and TGF-ß1 expression. Ubiquitin-specific protease 22 (USP22) reduced Sirt1 ubiquitination and degradation and decreased FN and TGF-ß1 expression in GMCs under both basal and AGEs-treated conditions. USP22 depletion enhanced Sirt1 degradation and displayed combined effects with AGEs to further promote FN and TGF-ß1 expression. RAGE functioned crucial mediating roles in these processes via its C-terminal cytosolic domain. Inhibiting Sirt1 by EX-527 substantially suppressed the down-regulation of FN and TGF-ß1 resulting from USP22 overexpression under both normal and AGEs-treated conditions, eventually leading to their up-regulation in GMCs. These results indicated that the AGEs-RAGE system increased the ubiquitination and subsequent proteasome-mediated degradation of Sirt1 by reducing USP22 level, and AGEs-RAGE-USP22-Sirt1 formed a cascade pathway that regulated FN and TGF-ß1 level, which participated in the pathological progression of diabetic nephropathy.


Subject(s)
Fibronectins/metabolism , Gene Expression Regulation/physiology , Glycation End Products, Advanced/metabolism , Receptors, Immunologic/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Fibronectins/genetics , Male , Rats , Rats, Sprague-Dawley , Receptor for Advanced Glycation End Products , Receptors, Immunologic/genetics , Sirtuin 1/genetics , Sirtuin 1/metabolism , Thiolester Hydrolases/genetics , Thiolester Hydrolases/metabolism , Transforming Growth Factor beta1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...