Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Environ Geochem Health ; 46(10): 414, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230752

ABSTRACT

Angqu, positioned in the eastern expanse of the Tibet Plateau, claims the title of the largest tributary to the Lancang River. In October and December of 2018, in the sediment of Angqu, a comprehensive investigation was conducted on nine heavy metals-arsenic (As), manganese (Mn), chromium (Cr), cadmium (Cd), lead (Pb), mercury (Hg), copper (Cu), zinc (Zn), and nickel (Ni). This investigation aimed to scrutinize the spatial and temporal distribution patterns of these metals, assess the pollution status and ecological risks associated with the sediments, and delve into the sources contributing to their presence. The research results indicate that the average concentrations of As, Hg, and Cd in Angqu sediments exceed the soil background values of Tibet, while the concentrations of other heavy metals are below the soil background values of Tibet. Notably, arsenic poses potential ecological risks. In Angqu sediments, the concentrations of Mn, Cu, Ni, and Pb are generally higher in the wet season, but the seasonal variations of heavy metals in Angqu sediments are not significant. The sediments in the Angqu Basin are predominantly affected by mercury Hg, Cd, and As, with varying degrees of pollution at different sampling points. In the main stream of Angqu (City section), Hg pollution has reached above a moderate level, whereas As pollution near the tributary is only slightly polluted. The analysis of heavy metal sources reveals that there are five primary contributors to heavy metals in surface sediments of Angqu: parent material, agricultural activities, groundwater, atmospheric deposition, and other unidentified sources. Mn, Cr, Pb, and Ni are mainly derived from soil parent material, accounting for more than 50%. About 60.82% of As comes primarily from groundwater. Zn and Cd are mainly sourced from agricultural activities, accounting for 41.25% and 34.33%, respectively. Additionally, 20.6% of Hg originates from atmospheric deposition.


Subject(s)
Environmental Monitoring , Geologic Sediments , Metals, Heavy , Rivers , Water Pollutants, Chemical , Metals, Heavy/analysis , Geologic Sediments/chemistry , Risk Assessment , Tibet , Water Pollutants, Chemical/analysis , Rivers/chemistry , Environmental Monitoring/methods
2.
Brain Imaging Behav ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39298114

ABSTRACT

Although structural and functional damage to the brain is considered to be an important neurobiological mechanism of postoperative delirium (POD), alterations in the visual cortical network related to this vulnerability have not yet been determined. In this study, we investigated the impact of alterations in the visual network (VN), as measured by structural and functional magnetic resonance imaging (MRI), on the development of POD. Thirty-six adult patients with frontal glioma who underwent elective craniotomy were recruited. The primary outcome was POD 1-7 days after surgery, as assessed by the Confusion Assessment Method. Cognition before surgery was measured by a battery of neuropsychological tests. Then, we evaluated preoperative and postoperative gray matter volume (GMV) and functional connectivity (FC) alterations by voxel-based morphometry and resting-state functional MRI (rs-fMRI) between the POD and non-POD groups. Multiple logistic regression models were used to investigate the associations between neuroimaging biomarkers and the occurrence of POD. Compared to those in the non-POD group, a decreased GMV in the fusiform gyrus (0.181 [0.018] vs. 0.207 [0.022], FDRp = 0.001) and decreased FC between the fusiform gyrus and VN (0.351 [0.153] vs. 0.610 [0.197], GFRp < 0.001) were observed preoperatively in the POD group, and increased FC between the fusiform gyrus and ventral attentional network (0.538 [0.180] vs. 0.452 [0.184], GFRp = < 0.001) was observed postoperatively in the POD group. According to our multiple logistic regression analysis, age (Odds ratio [OR]: 1.141 [1.015 to 1.282], P = 0.03) and preoperative fusiform-VN FC (OR 0.001 [0.001 to 0.067], P = 0.01) were significantly related to risk of POD. Our findings suggested that preoperative functional disconnectivity between fusiform and VN might be highly involved in the development of POD. These findings may allow for the discovery of additional underlying mechanisms.

3.
Angew Chem Int Ed Engl ; : e202411218, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137124

ABSTRACT

Chemical modification via functional dopants in carbon materials holds great promise for elevating catalytic activity and stability. To gain comprehensive insights into the pivotal mechanisms and establish structure-performance relationships, especially concerning the roles of dopants, remains a pressing need. Herein, we employ computational simulations to unravel the catalytic function of heteroatoms in the acidic oxygen evolution reaction (OER), focusing on a physical model of high-electronegative F and N co-doped carbon matrix. Theoretical and experimental findings elucidate that the enhanced activity originates from the F and pyridinic-N (Py-N) species that achieve carbon activation. This activated carbon significantly lowers the conversion energy barrier from O* to OOH*, shifts the potential-limiting step from OOH* formation to O* generation, and ultimately optimizes the energy barrier of the potential-limiting step. This wok elucidates that the critical role of heteroatoms in catalyzing the reaction and unlocks the potential of carbon materials for acidic OER.

4.
JACS Au ; 4(8): 2925-2935, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39211597

ABSTRACT

Anthraquinone-fused enediynes are anticancer natural products featuring a DNA-intercalating anthraquinone moiety. Despite recent insights into anthraquinone-fused enediyne (AQE) biosynthesis, the enzymatic steps involved in anthraquinone biogenesis remain to be elucidated. Through a combination of in vitro and in vivo studies, we demonstrated that a two-enzyme system, composed of a flavin adenine dinucleotide (FAD)-dependent monooxygenase (DynE13) and a cofactor-free enzyme (DynA1), catalyzes the final steps of anthraquinone formation by converting δ-thiolactone anthracene to hydroxyanthraquinone. We showed that the three oxygen atoms in the hydroxyanthraquinone originate from molecular oxygen (O2), with the sulfur atom eliminated as H2S. We further identified the key catalytic residues of DynE13 and A1 by structural and site-directed mutagenesis studies. Our data support a catalytic mechanism wherein DynE13 installs two oxygen atoms with concurrent desulfurization and decarboxylation, whereas DynA1 acts as a cofactor-free monooxygenase, installing the final oxygen atom in the hydroxyanthraquinone. These findings establish the indispensable roles of DynE13 and DynA1 in AQE biosynthesis and unveil novel enzymatic strategies for anthraquinone formation.

5.
Angew Chem Int Ed Engl ; : e202407308, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995157

ABSTRACT

The intrinsic correlation between depression and serotonin (5-HT) is a highly debated topic, with significant implications for the diagnosis, treatment, and advancement of drugs targeting neurological disorders. To address this important question, it is of utmost priority to understand the action mechanism of serotonin in depression through fluorescence imaging studies. However, the development of efficient molecular probes for serotonin is hindered by the lack of responsive sites with high selectivity for serotonin at the present time. Herein, we developed the first highly selective serotonin responsive site, 3-mercaptopropionate, utilizing thiol-ene click cascade nucleophilic reactions. The novel responsive site was then employed to construct the powerful molecular probe SJ-5-HT for imaging the serotonin level changes in the depression cells and brain tissues. Importantly, the imaging studies reveal that the level of serotonin in patients with depression may not be the primary factor, while the ability of neurons in patients with depression to release serotonin appears to be more critical. Additionally, this serotonin release capability correlates strongly with the levels of mTOR (intracellular mammalian target of rapamycin). These discoveries could offer valuable insights into the molecular mechanisms underpinning depression and furnish mTOR as a novel direction for the advancement of antidepressant therapies.

6.
Asian J Psychiatr ; 99: 104132, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38981150

ABSTRACT

OBJECTIVES: Delirium is a significant health concern in acute stroke patients. We aim to systematically summarize existing evidence to conduct a meta-analysis to quantify the occurrence and risk factors for delirium after acute stroke. METHOD: PubMed, EMBASE and MEDLINE were searched from inception to Feb. 2023 for prospective observational studies that reported the incidence or prevalence of post-stroke delirium and/or evaluated potential risk factors. The search strategy was created using controlled vocabulary terms and text words for stroke and delirium. We performed a meta-analysis of the estimates for occurrence and risk factors using random-effects models. Meta-regression and subgroup meta-analyses were conducted to explore the sources of heterogeneity. Study quality and quality of evidence were assessed using the customized Newcastle-Ottawa Scale and GRADE, respectively. RESULTS: Forty-nine studies that enrolled 12383 patients were included. The pooled occurrence rate of post-stroke delirium was 24.4 % (95 %CI, 20.4 %-28.9 %, I2=96.2 %). The pooled occurrence of hyperactive, hypoactive, and mixed delirium was 8.5 %, 5.7 % and 5.0 %, respectively. Study location, delirium assessment method and stroke type independently affected the heterogeneity of the pooled estimate of delirium. Statistically significant risk factors were older age, low education level, cigarette smoking, alcohol drinking, atrial fibrillation, lower ADL level, higher pre-stroke mRS score, premorbid cognitive impairment or dementia, aphasia, total anterior circulation impairment, higher National Institute of Health Stroke Scale score and infection. CONCLUSIONS: Delirium affected 1 in 4 acute stroke patients, although reported rates may depend on assessment method and stroke type. Timely prevention, recognition and intervention require prioritizing patients with dominant risk factors.

7.
Adv Mater ; : e2405128, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39072907

ABSTRACT

In alkaline water electrolysis and anion exchange membrane water electrolysis technologies, the hydrogen evolution reaction (HER) at the cathode is significantly constrained by a high energy barrier during the water dissociation step. This study employs a phase engineering strategy to construct heterostructures composed of crystalline Ni4W and amorphous WOx aiming to enhance catalytic performance in the HER under alkaline conditions. This work systematically modulates the oxidation states of W within the amorphous WOx of the heterostructure to adjust the electronic states of the phase boundary, the energy barriers associated with the water dissociation step, and the adsorption/desorption properties of intermediates during the alkaline HER process. The optimized catalyst, Ni4W/WOx-2, with a quasi-metallic state of W coordinated by a low oxygen content in amorphous WOx, demonstrates exceptional catalytic performance (22 mV@10 mA cm-2), outperforming commercial Pt/C (30 mV@10 mA cm-2). Furthermore, the operando X-ray absorption spectroscopy analysis and theoretical calculations reveal that the optimized W atoms in amorphous WOx serve as active sites for water dissociation and the nearby Ni atoms in crystalline Ni4W facilitated the release of H2. These findings provide valuable insights into designing efficient heterostructured materials for energy conversion.

8.
Anal Chim Acta ; 1312: 342748, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834262

ABSTRACT

Diabetes mellitus is a disorder that affects lipid metabolism. Abnormalities in the lipid droplets (LDs) can lead to disturbances in lipid metabolism, which is a significant feature of diabetic patients. Nevertheless, the correlation between diabetes and the polarity of LDs has received little attention in the scientific literature. In order to detect LDs polarity changes in diabetes illness models, we created a new fluorescence probe LD-DCM. This probe has a stable structure, high selectivity, and minimal cytotoxicity. The probe formed a typical D-π-A molecular configuration with triphenylamine (TPA) and dicyanomethylene-4H-pyran (DCM) as electron donor and acceptor parts. The LD-DCM molecule has an immense solvatochromic effect (λem = 544-624 nm), fluorescence enhancement of around 150 times, and a high sensitivity to polarity changes within the linear range of Δf = 0.28 to 0.32, all due to its distinctive intramolecular charge transfer effect (ICT). In addition, LD-DCM was able to monitor the accumulation of LDs and the reduction of LDs polarity in living cells when stimulated by oleic acid, lipopolysaccharide, and high glucose. More importantly, LD-DCM has also been used effectively to detect polarity differences in organs from diabetic, drug-treated, and normal mice. The results showed that the liver polarity of diabetic mice was lower than that of normal mice, while the liver polarity of drug-treated mice was higher than that of diabetic mice. We believe that LD-DCM has the potential to serve as an efficient instrument for the diagnosis of disorders that are associated with the polarity of LDs.


Subject(s)
Fluorescent Dyes , Lipid Droplets , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Animals , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Mice , Humans , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Optical Imaging , Male , Molecular Structure
9.
Schizophr Res ; 264: 113-121, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128342

ABSTRACT

OBJECTIVE: Coronary artery calcification (CAC) is a well-established independent predictor of coronary heart disease, and patients with schizophrenia have significantly higher rates compared to the general population. We performed this study to examine the population-specific risk factors associated with CAC in patients with schizophrenia. METHODS: In this cross-sectional study, patients with schizophrenia who underwent low-dose chest CT scans between January 2020 and December 2021 were analyzed. Ordinary CAC scores and results of routine blood tests were obtained. Logistic regression was used to calculate the odds ratio (OR) for potential risk factors in patients with and without CAC, while the negative binomial additive model was used to explore the dose-response relationship between risk factors and CAC score. RESULTS: Of the 916 patients, 233 (25.4 %) had CAC, while 683 (74.6 %) did not. After adjusting for confounding factors, higher triglyceride levels (OR = 1.20, 95 % confidence interval (CI): 1.04 to 1.38, p = 0.013) and low triiodothyronine levels (OR = 0.50, 95 % CI: 0.29 to 0.84; p = 0.010) were identified as risk factors for CAC. Both triglycerides (p = 0.021) and triiodothyronine (p = 0.010) were also found to have significant dose-response relationships with CAC scores according to the negative binomial additive model in the exploratory analysis. CONCLUSIONS: This study highlights elevated serum triglycerides and decreased triiodothyronine levels as population-specific risk factors for CAC in patients with schizophrenia, suggest the need for close monitoring of CAC in patients with schizophrenia and further prospective trials to provide additional evidence on this topic.


Subject(s)
Coronary Artery Disease , Schizophrenia , Humans , Triiodothyronine , Cross-Sectional Studies , Schizophrenia/diagnostic imaging , Schizophrenia/epidemiology , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Risk Factors , Triglycerides
10.
Anal Chem ; 95(49): 18029-18038, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38019809

ABSTRACT

Dual-mode imaging of fluorescence-photoacoustics has emerged as a promising technique for biomedical applications. However, conventional dual-mode imaging is based on single-wavelength excitation, which often results in opposing fluorescence and photoacoustic signals due to competing photophysical processes in one agent, rendering the maximization of both signals infeasible. To meet this challenge, we herein propose a new strategy by using the dual-excitation approach, where one excitation wavelength generates a fluorescence signal and the other produces a photoacoustic signal, thus achieving simultaneous maximization of both signals in one fluorescence-photoacoustic molecule. Based on this strategy, three dye molecules were employed for comparison, and it was surprising to find that QHD dye with two types of excitation wavelengths could generate fluorescence and photoacoustic signals, respectively. Furthermore, this strategy was successfully implemented in dual-mode imaging of rheumatoid arthritis mice. Importantly, this study emphasizes a new design guideline for the maximization of fluorescence-photoacoustic signals by using dual-wavelength-independent excitation.


Subject(s)
Photoacoustic Techniques , Mice , Animals , Photoacoustic Techniques/methods , Spectrum Analysis
11.
Neurosurg Rev ; 46(1): 196, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37555964

ABSTRACT

Controversies persist regarding the benefits of surgery in elderly patients with meningiomas. The objective of this study was to develop decision-making scale to clarify the necessity for surgical intervention and provide clinical consultation for this special population. This retrospective cohort study was conducted at a single center and included 478 elderly patients (≥ 65 years) who underwent meningioma resection. Follow-up was recorded to determine recurrence and mortality rates. Univariate and multivariate analyses were performed to identify significantly preoperative factors, and prognostic prediction models were developed with determined cutoff values for the prognostic index (PI). Model discrimination was evaluated using Kaplan-Meier curves based on the PI stratification, which categorized patients into low- and high-risk groups. A decision-making tree was then established based on the risk stratification from both models. Among all patients analyzed (n = 478), 62 (13.0%) experience recurrence and 47 (10.0%) died during the follow-up period. Significantly preoperative parameters from both models included advanced age, aCCI, recurrent tumor, motor cortex involvement, male sex, peritumoral edema, and tumor located in skull base (all P < 0.05). According to the classification of PI from the two models, the decision-making tree provided four recommendations that can be used for clinical consultation. Surgery is not recommended for patients assigned to the high-risk group in both models. Patients who meet the low-risk criteria in any model may undergo surgical intervention, but the final decision should depend on the surgeon's expertise.


Subject(s)
Meningeal Neoplasms , Meningioma , Aged , Humans , Cohort Studies , Meningeal Neoplasms/surgery , Meningioma/surgery , Neoplasm Recurrence, Local/surgery , Retrospective Studies , Treatment Outcome
12.
Angew Chem Int Ed Engl ; 62(41): e202309341, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37640691

ABSTRACT

Developing efficient electrocatalysts for the oxygen evolution reaction (OER) is paramount to the energy conversion and storage devices. However, the structural complexity of heterogeneous electrocatalysts makes it a great challenge to elucidate the dynamic structural evolution and OER mechanisms. Here, we develop a controllable atom-trapping strategy to extract isolated Mo atom from the amorphous MoOx -decorated CoSe2 (a-MoOx @CoSe2 ) pre-catalyst into Co-based oxyhydroxide (Mo-CoOOH) through an ultra-fast self-reconstruction process during the OER process. This conceptual advance has been validated by operando characterizations, which reveals that the initially rapid Mo leaching can expedite the dynamic reconstruction of pre-catalyst, and simultaneously trap Mo species in high oxidation state into the lattice of in situ generated CoOOH support. Impressively, the OER kinetics of CoOOH has been greatly accelerated after the reverse decoration of Mo species, in which the Mo-CoOOH affords a markedly decreased overpotential of 297 mV at the current density of 100 mA cm-2 . Density functional theory (DFT) calculations demonstrate that the Co species have been greatly activated via the effective electron coupling with Mo species in high oxidation state. These findings open new avenues toward directly synthesizing atomically dispersed electrocatalysts for high-efficiency water splitting.

13.
Environ Pollut ; 324: 121316, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36804880

ABSTRACT

Frequent outbreaks of cyanobacterial blooms have seriously threatened aquatic ecological environments and human health. Electrolysis by low-amperage electric current is effective for algae inactivation; however, it has no selectivity. Hydrogen peroxide (H2O2) is considered to be an efficient and selective suppressor of algae. Therefore, it is necessary to develop an electrode that can generate H2O2 to improve electrolysis technology. In this study, a carbon black polytetrafluoroethylene gas diffusion electrode (C-PTFE GDE) with good stability was prepared by a simple adhesive coating method. Then, the inactivation of Microcystis aeruginosa was conducted with electrolysis by low-amperage electric current using Ti/RuO2 as the anode and C-PTFE GDE as the cathode. When the electrode spacing was 4 cm, the current density was 20 mA cm-2, and the gas flow was 0.4 L min-1, 85% of the algae could be inactivated in 20 min. Comparing the inactivation effect of the electric field and electrogenerated oxidants, it was found that electrolysis more rapidly and strongly inactivated algae when an electric field existed. However, electrogenerated oxidants dominated algae inactivation. The concentration of H2O2 was as high as 58 mg L-1, while the concentration of chlorines was only 0.57 mg L-1, and the generation rate of H2O2 was 65 times that of chlorines. Consequently, electrogenerated oxidants dominated by H2O2 attacked photosystem II of the algae and caused oxidative damage to membrane lipids, affecting the photosynthetic capacity. Eventually, most of the algae were inactivated. The study suggested that C-PTFE GDE was promising for the inactivation of Microcystis aeruginosa in this electrochemical system.


Subject(s)
Hydrogen Peroxide , Microcystis , Humans , Soot , Electrolysis/methods , Oxidants , Gases , Electrodes , Oxidation-Reduction
14.
Angew Chem Int Ed Engl ; 62(4): e202216321, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36414544

ABSTRACT

Electrocatalytic synthesis of aldehydes from alcohols exhibits unique superiorities as a promising technology, in which cascade reactions are involved. However, the cascade reactions are severely limited by the low selectivity resulting from the peroxidation of aldehydes in a traditional liquid-solid system. Herein, we report a novel liquid-liquid-solid system to regulate the selectivity of benzyl alcohol electrooxidation. The selectivity of benzaldehyde increases 200-fold from 0.4 % to 80.4 % compared with the liquid-solid system at a high current density of 136 mA cm-2 , which is the highest one up to date. In the tri-phase system, the benzaldehyde peroxidation is suppressed efficiently, with the conversion of benzaldehyde being decreased from 87.6 % to 3.8 %. The as-produced benzaldehyde can be in situ extracted to toluene phase and separated from the electrolyte to get purified benzaldehyde. This strategy provides an efficient way to efficiently enhance the selectivity of electrocatalytic cascade reactions.

15.
J Neurosurg ; : 1-10, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36242576

ABSTRACT

OBJECTIVE: Patients with frontal gliomas often experience executive dysfunction (EF-D) before surgery, and the changes in brain plasticity underlying this effect remain obscure. In this study, the authors aimed to assess whole-brain structural and functional alterations by using structural MRI and resting-state functional MRI (rs-fMRI) in frontal glioma patients with or without EF-D. METHODS: Fifty-seven patients with frontal gliomas were admitted prospectively to the authors' institution and assigned to one of two groups: 1) the normal executive function (EF-N) group and 2) the EF-D group, based on patient results for the Trail Making Test, Part B and Stroop Color-Word Test, Part C. Twenty-nine baseline-matched healthy controls were also recruited. All participants underwent multimodal MRI examination. Cortical surface thickness, surface-based resting-state activity (fractional amplitude of low-frequency fluctuation [fALFF] and regional homogeneity [ReHo]), and edge-based network functional connectivity (FC) were measured with FreeSurfer and fMRIPrep. The correlation between altered MRI parameters and executive function (EF) was assessed using Pearson correlation and receiver operating characteristic (ROC) analysis. RESULTS: Demographic characteristics (sex, age, and education level) and clinical characteristics (location, volume, grade of tumor, and preoperative epilepsy) were not significantly different between the groups, but the Karnofsky Performance Scale score was worse in the EF-D group. There was no significant difference in cortical surface thickness between the EF-D and EF-N groups. In both low-grade and high-grade glioma patients the fALFF value (permutation test + threshold-free cluster enhancement, p value after family-wise error correction < 0.05) and ReHo value (t-test, p < 0.001) of the left precuneus cortex in the EF-D group were greater than those in the EF-N group, which were negatively correlated with EF (p < 0.05) and enabled prediction of EF (area under the ROC curve 0.826 for fALFF and 0.855 for ReHo, p < 0.001). Compared with the EF-N group, the FCs between the default mode network (DMN) from DMN node to DMN node (DMN-DMN) and from the DMN to the central executive network (DMN-CEN) in the EF-D group were increased significantly (network-based statistics corrected p < 0.05) and negatively correlated with EF (Pearson correlation, p < 0.05). CONCLUSIONS: Apart from local disruption, the abnormally activated DMN in the resting state is related to EF-D in frontal glioma patients. DMN activity should be considered during preoperative planning and postoperative neurorehabilitation for frontal glioma patients to preserve EF. Clinical trial registration no.: NCT03087838 (ClinicalTrials.gov).

16.
Anal Chim Acta ; 1232: 340480, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36257761

ABSTRACT

Asthma is a respiratory inflammatory disease that seriously threatens human health. A growing body of evidence suggests that hypochlorous acid (HClO) plays an instrumental role in inflammation-related diseases, and therefore we hypothesize that it may be associated with asthma. Unfortunately, tracking HClO levels in asthma remains challenging due to the lack of effective measures for in vivo imaging. Herein, we exquisitely designed a near-infrared fluorescence probe dicyanomethylene-4H-pyran-dimethylthiocarbamyl (DCM-DMTC) for exploring the relationship between HClO and asthma, which has high sensitivity (about 76 times), a low limit of detection (44 nM), and great selectivity for HClO. In addition, the probe DCM-DMTC was successfully employed in tracing exogenous and endogenous HClO in living cells. Notably, the higher levels of HClO in the lungs of asthmatic mice than in normal mice were visualized by fluorescence imaging for the first time, indicating a remarkably intimate association between asthma and the overproduction of HClO.


Subject(s)
Asthma , Hypochlorous Acid , Mice , Humans , Animals , Fluorescent Dyes , Optical Imaging/methods , Asthma/diagnostic imaging
17.
Neurosurg Rev ; 45(5): 3405-3415, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36063221

ABSTRACT

Meningioangiomatosis (MA) is a disease that is extremely rarely reported. Sporadic MA is occasionally combined with meningioma or other lesions (identified as non-pure MA). This retrospective study investigated the difference between pure MA and non-pure MA by exploring clinical manifestations, histopathology characteristics, and outcomes of MA after surgery. We reviewed the medical records of 36 histopathologically confirmed MA patients (18 pure MA and 18 non-pure MA) who received surgery at our institution between 2012 and 2021. We compared differences in demographic, clinical, imaging, pathological features, and surgical outcomes between pure MA and non-pure MA through descriptive statistics. Compared to non-pure MA, pure MA presented with a more prominent male predilection (5:1 vs. 1.57:1, P = 0.264), a higher seizure incidence (83.3% vs 50.0%, P = 0.038), a more seizure type of GTCS (14/15 vs 5/9, P = 0.047), a less prominent enhancement on MRI (27.8% vs 88.9%, P < 0.001) and a preference of temporal and frontal lobe (100% vs 44.4%, P < 0.001). The differences in clinical characteristics between pure MA and non-pure MA demonstrate their disparate biological natures. Pure MA seems to be a non-neoplastic lesion, while non-pure MA is commonly combined with meningioma, which is a neoplastic lesion. A correct differential diagnosis can be achieved via a triad of the type of seizure, the location of lesion and the radiological presentation. MA is curable and the prognosis is excellent as most patients are free of seizure and recurrence after surgical treatment.


Subject(s)
Central Nervous System Vascular Malformations , Meningeal Neoplasms , Meningioma , China , Humans , Magnetic Resonance Imaging , Male , Meningeal Neoplasms/diagnosis , Meningeal Neoplasms/pathology , Meningeal Neoplasms/surgery , Meningioma/diagnosis , Meningioma/pathology , Meningioma/surgery , Prognosis , Retrospective Studies , Seizures/etiology
18.
Se Pu ; 40(7): 625-633, 2022 Jul.
Article in Chinese | MEDLINE | ID: mdl-35791601

ABSTRACT

Nitroimidazoles (NMZs) are a crucial group of antibacterial compounds from a historical perspective. In the past, they were used for treating and preventing parasitic infections in fish. Benzodiazepines (BZDs) are second-generation sedative-hypnotics. Some fish farmers or vendors use them illegally to keep aquatic products fresh during the transportation of aquatic animals. Aquatic products are one of the most common food sources of protein and can be contaminated by NMZs and BZDs, which could impact humans through the food chain. Until recently, there was limited information on the simultaneous determination of NMZs and BZDs. Thus, it is critical to accurately quantify NMZs and BZDs for risk assessment and risk monitoring of food safety. For the simultaneous determination of five nitroimidazoles and six benzodiazepines in aquatic products, a new approach based on the dispersive solid-phase extraction (dSPE) coupled with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed. First, the samples were extracted with acetonitrile containing 1% (v/v) ammonium hydroxide, and the extracts were purified using dSPE with C18 and primary secondary amine sorbents. Second, the extracts were collected and dried at 45 ℃ under nitrogen flow. Finally, the extracts were redissolved in 1 mL methanol-water (1∶9, v/v) mixture, filtered through a nylon-66 microfiltration membrane, and analyzed using UHPLC-MS/MS. The separation of compounds was conducted on a Kinetex F5 column (100 mm×3.0 mm, 2.6 µm) using gradient elution with 1% (v/v) formic acid aqueous solution and methanol as the mobile phase. The analytes were detected using MS/MS with positive electrospray ionization (ESI+) source under the multiple reaction monitoring modes. The matrix-matched external standard approach was used for quantitative analysis. The compounds of five nitroimidazoles and six benzodiazepines could be examined within 8.5 min. Under the optimal conditions, the standard curves were linear in the range of 0.5-20 µg/L, with the correlation coefficients exceeding 0.995. The limits of detection and limits of quantification were 0.2-0.5 µg/kg and 0.5-1.0 µg/kg, respectively. The average recoveries at three spiked levels in blank samples (grass carp, large yellow croaker, and prawn) ranged from 73.2% to 110.6%, with relative standard deviations of less than 15%. The developed approach is simple, sensitive, fast, and inexpensive. It can be used for determining five nitroimidazoles and six benzodiazepines in aquatic products.


Subject(s)
Nitroimidazoles , Tandem Mass Spectrometry , Animals , Benzodiazepines , Chromatography, High Pressure Liquid , Methanol , Solid Phase Extraction
19.
Front Aging Neurosci ; 14: 822984, 2022.
Article in English | MEDLINE | ID: mdl-35493935

ABSTRACT

Objective: The brain compensation mechanism in postoperative delirium (POD) has not been reported. We uncovered the mechanism by exploring the association between POD and glioma grades, and the relationship between preoperative brain structural and functional compensation with POD in patients with frontal glioma. Methods: A total of 335 adult patients with glioma were included. The multivariable analysis examined the association between tumor grade and POD. Then, 20 patients with left frontal lobe glioma who had presurgical structural and functional MRI data and Montreal Cognitive Assessment (MoCA) in this cohort were analyzed. We measured the gray matter volume (GMV) and functional connectivity (FC) in patients with (n = 8) and without (n = 12) POD and healthy controls (HCs, n = 29) to detect the correlation between the structural and functional alteration and POD. Results: The incidence of POD was 37.3%. Multivariable regression revealed that high-grade glioma had approximately six times the odds of POD. Neuroimaging data showed that compared with HC, the patients with left frontal lobe glioma showed significantly increased GMV of the right dorsal lateral prefrontal cortex (DLPFC) in the non-POD group and decreased GMV of right DLPFC in the POD group, and the POD group exhibited significantly decreased FC of right DLPFC, and the non-POD group showed the increasing tendency. Partial correlation analysis showed that GMV in contralesional DLPFC were positively correlated with preoperative neurocognition, and the GMV and FC in contralesional DLPFC were negatively correlated with POD. Conclusions: Our findings suggested that insufficient compensation for injured brain regions involving cognition might be more vulnerable to suffering from POD.

20.
Neurosurg Rev ; 45(4): 2845-2855, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35508819

ABSTRACT

Although every glioma patient varies in tumor size, location, histological grade and molecular biomarkers, non-tumoral morphological abnormalities are commonly detected by a statistical comparison among patient groups, missing the information of individual morphological alterations. In this study, we introduced an individual-level structural abnormality detection method for glioma patients and proposed several abnormality indexes to depict individual atrophy patterns. Forty-five patients with a glioma in the frontal lobe and fifty-one age-matched healthy controls participated in the study. Individual structural abnormality maps (SAM) were generated using patients' preoperative T1 images, by calculating the degree of deviation of voxel volume in each patient with the normative model built from healthy controls. Based on SAM, a series of individual abnormality indexes were computed, and their relationship with glioma characteristics was explored. The results demonstrated that glioma patients showed unique non-tumoral atrophy patterns with overlapping atrophy regions mainly located at hippocampus, parahippocampus, amygdala, insula, middle temporal gyrus and inferior temporal gyrus, which are closely related to the human cognitive functions. The abnormality indexes were associated with several molecular biomarkers including isocitrate dehydrogenase (IDH) mutation, 1p/19q co-deletion and telomerase reverse transcriptase (TERT) promoter mutation. Our study provides an effective way to access the individual-level non-tumoral structural abnormalities in glioma patients, which has the potential to significantly improve individualized precision medicine.


Subject(s)
Brain Neoplasms , Glioma , Telomerase , Atrophy , Brain Neoplasms/pathology , Glioma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Mutation , Telomerase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL