Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37686442

ABSTRACT

Insulin-like androgenic gland hormone (IAG) is a key regulator of male sexual differentiation in crustaceans that plays important roles in secondary sexual characteristics and testicular development. As a hormone, IAG interacts with its membrane receptor to initiate downstream signal pathways to exert its biological functions. In this study, we isolated a full-length cDNA of an insulin-like receptor (Sp-IR) from the mud crab Scylla paramamosain. Sequence analysis revealed that this receptor consists of a Fu domain, two L domains, three FN-III domains, a transmembrane domain, and a tyrosine kinase domain, classifying it as a member of the tyrosine kinase insulin-like receptors family. Our results also suggested that Sp-IR was highly expressed in the testis and AG in males. Its expression in the testis peaked in stage I but significantly decreased in stages II and III (p < 0.01). Next, both short- and long-term RNA interference (RNAi) experiments were performed on males in stage I to explore Sp-IR function in mud crabs. The results showed that Sp-vasa and Sp-Dsx expression levels in the testis were significantly down-regulated after the specific knockdown of Sp-IR by RNAi. Additionally, the long-term knockdown of Sp-IR led to a considerable decrease in the volume of seminiferous tubules, accompanied by large vacuoles and a reduced production of secondary spermatocytes and spermatids. In conclusion, our results indicated that Sp-IR is involved in testicular development and plays a crucial role in transitioning from primary to secondary spermatocytes. This study provided a molecular basis for the subsequent analysis of the mechanism on male sexual differentiation in Brachyuran crabs.


Subject(s)
Brachyura , Male , Animals , Brachyura/genetics , Sex Differentiation/genetics , Insulin , Seminiferous Tubules , Protein-Tyrosine Kinases
2.
Int J Mol Sci ; 24(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37569617

ABSTRACT

The crustacean female sex hormone (CFSH) is a neurohormone peculiar to crustaceans that plays a vital role in sexual differentiation. This includes the preservation and establishment of secondary female sexual traits, as well as the inhibition of insulin-like androgenic gland factor (IAG) expression in the androgenic gland (AG). There have been no reports of CFSH receptors in crustaceans up to this point. In this study, we identified a candidate CFSH receptor from the mud crab Scylla paramamosain (named Sp-SEFIR) via protein interaction experiments and biological function experiments. Results of GST pull-down assays indicated that Sp-SEFIR could combine with Sp-CFSH. Findings of in vitro and in vivo interference investigations exhibited that knockdown of Sp-SEFIR could significantly induce Sp-IAG and Sp-STAT expression in the AG. In brief, Sp-SEFIR is a potential CFSH receptor in S. paramamosain, and Sp-CFSH controls Sp-IAG production through the CFSH-SEFIR-STAT-IAG axis.


Subject(s)
Brachyura , Animals , Female , Brachyura/genetics , Brachyura/metabolism , Androgens/metabolism , Sex Differentiation , Phenotype , Carrier Proteins/metabolism
3.
Fish Shellfish Immunol ; 121: 142-151, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34998986

ABSTRACT

Crustacean cardioactive peptide (CCAP) is a pleiotropic neuropeptide, but its immunomodulatory role is not clear. Herein, the mud crab Scylla paramamosain provides a primitive model to study crosstalk between the neuroendocrine and immune systems. In this study, in situ hybridization showed that Sp-CCAP positive signal localized in multiple cells in the nervous tissue, while its conjugate receptor (Sp-CCAPR) positive signal mainly localized in the semigranular cells of hemocytes. The Sp-CCAP mRNA expression level in the thoracic ganglion was significantly up-regulated after lipopolysaccharide (LPS) stimulation, but the Sp-CCAP mRNA expression level was up-regulated firstly and then down-regulated after the stimulation of polyriboinosinic polyribocytidylic acid [Poly (I:C)]. After the injection of Sp-CCAP synthesis peptide, the phagocytosis ability of hemocytes was significantly higher than that of synchronous control group. Simultaneously, the mRNA expression of phagocytosis related gene (Sp-Rab5), nuclear transcription factor NF-κB homologues (Sp-Relish), C-type lectin (Sp-CTL-B), prophenoloxidase (Sp-proPO), pro-inflammatory cytokines factor (Sp-TNFSF, Sp-IL16) and antimicrobial peptides (Sp-ALF1 and Sp-ALF5) in the hemocytes were also significantly up-regulated at different time points after the injection of Sp-CCAP synthetic peptide, but Sp-TNFSF, Sp-ALF1 and Sp-ALF5 were down-regulated significantly at 24h. In addition, RNA interference of Sp-CCAP suppressed the phagocytic activity of hemocytes and inhibited the mRNA expression of Sp-Rab5, Sp-Relish, Sp-CTL-B, Sp-TNFSF, Sp-IL16 and Sp-ALF5 in the hemocytes, and ultimately weakened the ability of hemolymph bacteria clearance of mud crab. Taken together, these results revealed that CCAP induced innate immune and increased the anti-infection ability in the mud crab.


Subject(s)
Arthropod Proteins/immunology , Brachyura , Immunity, Innate , Neuropeptides , Animals , Brachyura/genetics , Brachyura/immunology , Interleukin-16 , Neuropeptides/immunology , Phylogeny , Poly I-C/pharmacology , RNA, Messenger/genetics
4.
Dev Comp Immunol ; 126: 104260, 2022 01.
Article in English | MEDLINE | ID: mdl-34536467

ABSTRACT

Short neuropeptide F (sNPF) is bioactive peptide secreted by neurons of invertebrates. It is one of the important pleiotropic neural molecules that is associated with a variety of physiological processes in invertebrates. However, little is known about the role of sNPF in the immune response. This study aimed to determine the distribution, localization, functional characteristics and signaling mechanisms of the sNPF gene and sNPF receptor (sNPF-R) gene in the mud crab Scylla paramamosain. Results of this study showed that Sp-sNPF and Sp-sNPF-R were widely expressed in neural tissue and other tissues including hemocytes. Further, in situ hybridization analysis revealed that Sp-sNPF and Sp-sNPF-R have specific localization in cerebral ganglion and hemocytes. It was also found that immune stimuli significantly induced Sp-sNPF expression in cerebral ganglion. The hemocyte-derived Sp-sNPF and Sp-sNPF-R were also efficiently activated upon immune stimulation. In vitro sNPF peptide administration enhanced phagocytic ability of hemocytes. However, this activity could be blocked through knockdown of sNPF-R-dsRNA or using adenylate cyclase inhibitors SQ 22536. The results of this study also demonstrated that the contents of signaling molecule adenylyl cyclase (AC), cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in hemocytes can be up-regulated after incubation with sNPF peptide. In addition, the results of in vivo experiments showed that sNPF increased concentration of nitric oxide (NO) and enhanced phagocytic potential in S. paramamosain. The sNPF also significantly induced the expression of immune-related molecules at the gene level in S. paramamosain. In conclusion, the findings of this study indicate that sNPF mediates hemocyte phagocytosis via sNPF-R receptor-coupled AC-cAMP-PKA pathway and influences the innate immune processes in S. paramamosain.


Subject(s)
Brachyura , Neuropeptides , Animals , Arthropod Proteins/metabolism , Gene Expression Profiling , Immunity, Innate/genetics , Neuropeptides/genetics , Phagocytosis
5.
Gen Comp Endocrinol ; 299: 113616, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32950581

ABSTRACT

The epidermal growth factor receptor (EGFR) is a pleiotropic glycoprotein which plays a role in regulating cell proliferation, migration and differentiation. However, to date little is known about its functions in crustaceans. In this study, we successfully identified SpEGFR from mud crab Scylla paramamosain. RT-PCR result showed that SpEGFR was widely distributed in all tested tissues and highly expressed in ovary. In situ hybridization revealed that SpEGFR mainly localized in oocyte perinuclear region with notably obvious signals. In vitro experiments showed that the expression of SpVgR and SpCyclin B in ovary explants from late vitellogenic stage crabs (summer) were significantly increased when treated with 1 nM human EGF (hEGF) for 1 h, while there was no obvious change towards SpEGFR. Interestingly, as for winter crab at the same vitellogenic stage, the expression of SpVgR and SpCyclin B in ovary explants did not show significant increase until treated with higher concentration of 10 nM hEGF and longer incubation time of 12 h. In addition, the hEGF-induced effect could be suppressed by pre-treated with EGFR inhibitor AG1478 and PD153035, respectively, which further indicated that EGF-EGFR pathway played a vital role in ovarian development in mud crab. In conclusion, SpEGFR might promote ovarian development by stimulating the expression of SpVgR and SpCyclin B under hEGF-induced treatment. The different physiological response to hEGF in the same vitellogenic stage crabs between summer and winter might be attributed to the changes in metabolism and physiological sensitivity.


Subject(s)
Brachyura/growth & development , ErbB Receptors/metabolism , Oocytes/cytology , Ovary/cytology , Vitellogenesis , Animals , Brachyura/metabolism , Female , Oocytes/metabolism , Ovary/metabolism
6.
Biol Reprod ; 103(4): 817-827, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32582944

ABSTRACT

To date, the molecular mechanisms of the unique gonadal development mode known as protandric simultaneous hermaphroditism (PSH) are unclear in crustaceans. In this study, cDNA of a gonad-inhibiting hormone (Lv-GIH1) was isolated from the PSH peppermint shrimp Lysmata vittata, and its expression was exclusively found in the eyestalk ganglion. Real-time quantitative polymerase chain reaction (qRT-PCR) revealed that the expression of Lv-GIH1 increased during gonadal development of the functional male stages but decreased significantly at subsequent simultaneous hermaphroditism stage. Further in vitro experiment showed that recombinant GIH1 protein (rGIH1) effectively inhibited Vg expression in the cultured hepatopancreas tissues while the short-term injection of GIH1-dsRNA resulted in reduced expression of Lv-GIH1 and upregulated expression of Vg in the hepatopancreas. Moreover, long-term rGIH1 injection led to significantly reduced expression of Lv-Vg, Lv-VgR, and Lv-CFSH1, subdued growth of oocytes, and feathery setae as a secondary sexual characteristic in females. Interestingly, while germ cells in testicular part were suppressed by rGIH1 injection, the expression of Lv-IAGs showed no significant difference; and long-term GIH1-dsRNA injection results were contrary to those of rGIH1 injection. Taken together, the results of this study indicate that Lv-GIH1 is involved in gonadal development and might also participate in controlling secondary sexual characteristic development in L. vittata by inhibiting Lv-CFSH1 expression.


Subject(s)
Decapoda/physiology , Gene Expression Regulation/physiology , Hermaphroditic Organisms/metabolism , Invertebrate Hormones/metabolism , Animals , Cloning, Molecular , Decapoda/growth & development , Gene Knockdown Techniques , Gonads/growth & development , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Invertebrate Hormones/pharmacology , Phylogeny , RNA/genetics , RNA/metabolism , Sex Differentiation
7.
Article in English | MEDLINE | ID: mdl-32328029

ABSTRACT

Crustacean female sex hormone (CFSH) is a key regulator of crustacean sex differentiation. The expression of Sp-CFSH in the mud crab Scylla paramamosain showed a tissue-specific and gender-variant pattern. To explore the role of DNA methylation in Sp-CFSH expression, the 5'-flanking region of Sp-CFSH was cloned, and one CpG island containing 12 CpG sites was found. Results of sodium bisulfite sequencing and methylated DNA immunoprecipitation showed that CpG island methylation was stable in the eyestalk ganglion during ovarian development of the females, which was significantly lower than that in the muscle of the females and in the eyestalk ganglion of the males. Such results suggested that the involvement of DNA methylation in regulating Sp-CFSH expression followed an eyestalk ganglion-specific and gender-variant pattern. The analysis of CpG dinucleotide site methylation and activity of the site-directed mutation (SDM) reporter vector further demonstrated that methylation inhibited Sp-CFSH expression by blocking the binding of transcription factor Sp1. The finding suggested for the first time the involvement of CpG methylation in the regulation of Sp-CFSH expression.


Subject(s)
Brachyura/genetics , DNA Methylation/physiology , Gonadal Steroid Hormones/genetics , Animals , Base Sequence , Cloning, Molecular , CpG Islands/genetics , Down-Regulation/genetics , Female , Gene Expression Regulation, Developmental , Gonadal Steroid Hormones/metabolism , Male , Ovary/growth & development , Ovary/metabolism , Promoter Regions, Genetic , Sequence Analysis, DNA , Sex Differentiation/genetics
8.
Gen Comp Endocrinol ; 289: 113383, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31904358

ABSTRACT

Recent studies have shown that crustacean female sex hormone (CFSH) is involved in the development of reproductive phenotype. In the present study, observation of sexually dimorphic traits revealed that gender could be distinguished from the third stage juveniles onwards in the mud crab, Scylla paramamosain. Sp-cfsh expression levels were analyzed in early juveniles. The results showed that, Sp-cfsh expression levels differed among individuals at post-molt of the first stage and second stage, and significantly different between the two sexes at post-molt of the third stage, which suggested that Sp-cfsh might participate in the sex differentiation in early juveniles. The expression of Sp-cfsh was examined during the molting cycle at the third stage juveniles, and the results showed that it was highest at the pre-molt stage. Based on the results, the expression of Sp-cfsh at pre-molt stage was further analyzed between the sexes from the third stage to the fifth stage, and it was found that the expression of Sp-cfsh was similar between two sexes at the third stage and the fourth stage; whereas at the fifth stage, when the gonopores occurred, the expression of Sp-cfsh significantly increased in females but decreased in males; suggesting that the expression of Sp-cfsh could influence the formation of gonopores. Finally, the role of Sp-cfsh in the reproductive phenotypes was confirmed through RNA interference knockdown. The combined results suggest that CFSH is involved in the regulation of sex differentiation of early juvenile in S. paramamosain.


Subject(s)
Gonadal Steroid Hormones/metabolism , Animals , Brachyura , Female , Sex Differentiation
9.
Gen Comp Endocrinol ; 285: 113248, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31430448

ABSTRACT

Neuroparsin (NP) is an important neuropeptide in invertebrates. It is well-known that NP displays multiple biological activities, including antidiuretic and inhibition of vitellogenesis in insects. However, the information about its effect in crustaceans is scarce. In this study, the sequence of Sp-NP1 was selected from the transcriptome database from the mud crab, Scylla paramamosain. Sequence analyses indicate that the Sp-NP1 amino acid (AA) sequences consist of a 27 AA signal peptide and a 74 AA mature peptide, which contains 12 cysteine residues. qRT-PCR analysis has revealed that the expressions of Sp-NP1 gene are high in the nervous tissues and extremely low in the ovary and hepatopancreas. In situ hybridization has shown that the positive signals are localized in cell cluster 6 of protocerebrum and cell clusters 10 and 11 of deutocerebrum. The presence of Sp-NP1 in the haemolymph has been detected in S. paramamosain through western blot, which indicates that Sp-NP1 serves as an endocrine factor in the regulation of physiological activities. In vitro experiments have further shown that the mRNA level of vitellogenin in the hepatopancreas notably decreases following administration of recombinant Sp-NP1, while the mRNA level of vitellogenin receptor and cyclin B in the ovary shows no significant differences. Collectively, Sp-NP1 possibly can inhibit the production of vitellogenin in the hepatopancreas and has no direct effect on the ovary in S. paramamosain.


Subject(s)
Brachyura/metabolism , Neuropeptides/metabolism , Vitellogenesis , Amino Acid Sequence , Animals , Female , Ganglia, Invertebrate/metabolism , Gene Expression Regulation , Hemolymph/metabolism , Hepatopancreas/metabolism , Neuropeptides/chemistry , Neuropeptides/genetics , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/isolation & purification , Tissue Distribution , Vitellogenesis/genetics
10.
J Exp Biol ; 222(Pt 21)2019 11 06.
Article in English | MEDLINE | ID: mdl-31558587

ABSTRACT

C-Type allatostatins are a family of peptides that characterized by a conserved unblocked PISCF motif at the C-terminus. In insects, it is well known that C-type allatostatin has a potent inhibitory effect on juvenile hormone biosynthesis by the corpora allata. C-Type allatostatin has been widely identified from crustacean species but little is known about its roles. Therefore, this study investigated the tissue distribution patterns of C-type allatostatin and its putative receptor in the mud crab Scylla paramamosain, and further explored its potential effect on vitellogenesis. Firstly, cDNAs encoding C-type allatostatin (Sp-AST-C) precursor and its putative receptor (Sp-AST-CR) were isolated. Subsequently, RT-PCR revealed that Sp-AST-C was mainly expressed in the nervous tissue, middle gut and heart, whereas Sp-AST-CR had extensive expression in all tissues tested except the eyestalk ganglion and hepatopancreas. In addition, in situ hybridization in the cerebral ganglion showed that Sp-AST-C was localized in clusters 6 and 8 of the protocerebrum, clusters 9, 10 and 11 of the deutocerebrum, and clusters 14 and 15 of the tritocerebrum. Whole-mount immunofluorescence revealed a similar distribution pattern. Synthetic Sp-AST-C had no effect on the abundance of S. paramamosain vitellogenin (Sp-Vg) in the hepatopancreas and ovary in vitro but significantly reduced the expression of its receptor (Sp-VgR) in the ovary in a dose-dependent manner. Furthermore, Sp-VgR expression, vitellin content and oocyte diameter in the ovary were reduced 16 days after the first injection of Sp-AST-C. Finally, in situ hybridization showed that Sp-AST-CR transcript was specifically localized in the oocytes, which further indicated that the oocytes are the target cells for Sp-AST-C. In conclusion, our results suggested that the Sp-AST-C signaling system is involved in the regulation of ovarian development, possibly by directly inhibiting the uptake of yolk by oocytes and obstructing oocyte growth.


Subject(s)
Brachyura/genetics , Brachyura/immunology , Neuropeptides/genetics , Neuropeptides/immunology , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/immunology , Amino Acid Sequence , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Base Sequence , Female , Gene Expression Profiling , Neuropeptides/chemistry , Ovary/growth & development , Receptors, Neuropeptide/chemistry , Sequence Alignment , Tissue Distribution , Vitellogenesis/genetics
11.
PLoS One ; 14(7): e0220405, 2019.
Article in English | MEDLINE | ID: mdl-31344118

ABSTRACT

Calreticulin (CRT) is an important molecular chaperon crucial to survival of organisms under adverse conditions. In this study, the potential roles of CRT in the mud crab, Scylla paramamosain, were investigated. Firstly, SpCRT gene expression was detected in various tissues of S. paramamosain with the highest expression found in the hepatopancreas. To evaluate potential role of SpCRT in cold adaption, sub-adult crabs were subjected to temperatures of 10, 15, 20 and 25°C and the profiles of SpCRT gene were determined in the hepatopancreas, chela muscle and gills. The results showed that the expressions of SpCRT mRNA in these tissues were significantly higher for those crabs exposed to low temperatures of 10 and 15°C as compared to those exposed to the higher temperatures, indicating SpCRT was involved in cold adaptation-probably through facilitating protein folding. When low temperature 10°C or 15°C was further combined with high and low salinity stress, the expression of SpCRT mRNA at low salinity (10 ppt) was in most cases significantly higher than that at high salinity (35 ppt), suggesting that under low temperatures, low salinity may represents a more stressful condition to the crab than high salinity. It was also shown that when crabs challenged by 10°C, Ca2+ concentration increased rapidly in the hepatopancreas and an in vitro experiment further showed that the expression of SpCRT mRNA increased concurrently with added Ca2+ concentration; these results together imply that Ca2+ probably plays a major role in low temperature signaling, which induces expression of genes related to cold adaption, such as CRT.


Subject(s)
Brachyura , Calcium/metabolism , Calreticulin/genetics , Cold-Shock Response , Salt Stress , Adaptation, Physiological/genetics , Animals , Brachyura/genetics , Brachyura/metabolism , Calreticulin/metabolism , Cold Temperature , Cold-Shock Response/genetics , Gills/metabolism , Hepatopancreas/metabolism , Muscles/metabolism , Salinity , Salt Stress/genetics , Stress, Physiological/physiology , Transcriptome
12.
Front Physiol ; 10: 797, 2019.
Article in English | MEDLINE | ID: mdl-31275175

ABSTRACT

The mechanism of serotonin (5-HT)-induced oocyte germinal vesicle breakdown (GVBD) in the mud crab, Scylla paramamosain, was investigated in this study. Histological staining showed that there were two meiotic arrests in oocyte, appearing at prophase I and metaphase I. This result indicated that meiosis I arrest at prophase I in S. paramamosain was similar to that of vertebrates, but meiosis II arrest at metaphase I was different from that of vertebrates. Resumption of oocytes arrest at meiosis prophase I could be induced by 5-HT rapidly within 5 min in S. paramamosain. We obtained the sequence of the 5-HT receptor type 1A (5-HTR1A ) from the NCBI database, and found that 5-HTR1A was expressed in oocytes and follicle cells. In addition, we found that an agonist 8-OH-DPAT which binds 5-HTR1A induced GVBD and an antagonist WAY100635 which inhibited 5-HT induced GVBD in S. paramamosain. This result showed that 5-HTR1A mediated the regulation of oocyte GVBD by 5-HT. To explore the functional mechanism of 5-HT in inducing oocyte GVBD, forskolin, a cAMP agonist was used. Results showed that, forskolin significantly blocked 5-HT-induced GVBD, and there was a negative correlation between GVBD rate and cAMP level. Our data indicate that there are two meiotic arrests in S. paramamosain, and the resumption of prophase I arrest can be induced by 5-HT, which binds to 5-HTR1A , and this process is mediated by cAMP, which acts as negative regulator via cAMP signaling pathway.

13.
Gen Comp Endocrinol ; 269: 122-130, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30189191

ABSTRACT

Neuropeptides, ubiquitous signaling molecules, commonly achieve their signaling function via interaction with cell membrane-spanning G-protein coupled receptors (GPCRs). In recent years, in the midst of the rapid development of next-generation sequencing technology, the amount of available information on encoded neuropeptides and their GPCRs sequences have increased dramatically. The repertoire of neuropeptides has been determined in many crustaceans, including the commercially important mud crab, Scylla paramamosain; however, determination of GPCRs is known to be more difficult and usually requires in vitro binding tests. In this study, we adopted a combinatorial bioinformatics analysis to identify S. paramamosain neuropeptide GPCRs. A total of 65 assembled GPCR sequences were collected from the transcriptome database. Subsequently these GPCRs were identified by comparison to known neuropeptide GPCRs based on the sequence-similarity-based clustering and phylogenetic analysis, which showed that many of them are closely related to insect GPCR families. Of these GPCRs, most of them were detected in various tissues of the mud crab and some of them showed differential expression by gender, suggesting they are involved in different physiological processes, such as sex differentiation. By employing ligand-receptor binding tests, we demonstrated that the predicted crustacean cardioactive peptide (CCAP) receptor was activated by CCAP peptide in a dose-dependent manner. This is the first CCAP receptor that has been functionally defined in crustaceans. In summary, the present study shortlists candidate neuropeptide GPCRs for ligand-receptor binding tests, and provides information for subsequent future research on the neuropeptide/GPCR signaling pathway in S. paramamosain.


Subject(s)
Brachyura/metabolism , Computational Biology/methods , Neuropeptides/metabolism , Receptors, G-Protein-Coupled/metabolism , Amino Acid Sequence , Animals , Cluster Analysis , High-Throughput Nucleotide Sequencing , Ligands , Luciferases/metabolism , Peptides/chemistry , Phylogeny , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tissue Distribution , Transcriptome/genetics
14.
Article in English | MEDLINE | ID: mdl-30057569

ABSTRACT

Neuropeptides, in addition to their classical role in the nervous system, act on intraovarian factors to regulate reproductive functions in vertebrates. However, this function of neuropeptides has not been characterized in crustaceans. Short neuropeptide F (sNPF), a highly conserved invertebrate neuropeptide, has been reported to be involved in feeding, metabolism, and in differentiation processes including reproduction. Although sNPF and its receptor (sNPFR) have been detected in the ovary in different species, ovarian colocalization of sNPF/sNPFR has not been investigated. In this study, we identified Scylla paramamosain (mud crab) sNPF (Sp-sNPF) as an endogenous ligand for the S. paramamosain orphan G protein-coupled receptor NPY2R in mammalian cell line HEK293T. We designated this receptor as Sp-sNPFR. RNA in situ hybridization in pre-vitellogenic ovary and reverse transcription-PCR on isolated denuded oocytes and follicle layers showed that Sp-sNPF was exclusively localized to the follicle cells, whereas Sp-sNPFR was detected in both follicle cells and oocytes. We also found that Sp-sNPF partly suppressed spontaneous maturation of denuded oocytes and caused intracellular cAMP accumulation and Ca2+ mobilization. Moreover, injection of synthetic Sp-sNPF peptides inhibited the expression of vitellogenin and vitellogenin receptor genes in vivo. These combined results suggest for the first time that Sp-sNPF may have inhibitory functions in vitellogenesis and oocyte maturation possibly via the autocrine/paracrine pathway.

15.
Neuroreport ; 29(13): 1068-1074, 2018 09 05.
Article in English | MEDLINE | ID: mdl-29965872

ABSTRACT

Voltage-dependent calcium channels (VDCCs) play a critical role in stimulus-secretion coupling in neurosecretory cells (NSCs). The crustacean cerebral ganglion plays a crucial role in neuromodulation and controls neuropeptide release. The present study used patch-clamp and Illumina sequencing techniques to investigate the potential features of VDCC in the cerebral ganglia of the mud crab (Scylla paramamosain). The electrophysiological characteristics of VDCC were analyzed in three types of NSCs with a patch clamp. The thresholds for activation of Ca channel current recorded from all the three types of NSCs were all above -40 mV, with peak amplitudes occurring around 0 mV. Therefore, it was concluded that the currents recorded in NSCs were mediated by high-voltage-activated Ca channels. Ca channel current densities in I type NSCs were significantly lower than those in II and III type NSCs. Four VDCC subunits derived from three transcripts were predicted from a transcriptome database of the cerebral ganglia. Among these transcripts, Cavα1, Cavß, and Cavα2/δ were predicted to encode 1674, 554, and 776 amino acids, respectively, and they shared conservative domains with VDCC subunits in other species. Overall, these findings provide an important basis for further studies on the neuroendocrine mechanisms in crustaceans.


Subject(s)
Brachyura/metabolism , Calcium Channels/metabolism , Ganglia, Invertebrate/metabolism , Animals , Arthropod Proteins/metabolism , Calcium Signaling
16.
Gen Comp Endocrinol ; 266: 119-125, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29746856

ABSTRACT

A bone morphogenetic protein ligand (BMP7) and its two receptors (BMPRIB and BMPRII) were recently cloned and characterized in the mud crab, Scylla paramamosain. However specific functions of BMP7 and the mechanistic pathways regulating its function are largely unidentified. In the present study, we separated oocytes and follicle cells from the ovarian explants of S. paramamosain. Subsequent analysis using semi-quantitative PCR demonstrated that the mRNA of Sp-BMP7 was exclusively expressed in follicle cells while Sp-BMPRs were expressed in both oocytes and follicle cells. In vitro experiments further showed that the mRNA and protein levels of Cyclin B increased but Sp-BMP7 declined in 17α, 20ß-Dihydroxyprogesterone (DHP)-induced oocytes. Furthermore, the inhibitory effects of Sp-BMP7 were not affected by the elimination of the contact/gap junction-mediated communication between oocytes and follicle cells. Our data indicate that BMP7 may play a role in the suppression of DHP-induced oocyte maturation by affecting autocrine/paracrine pathways in S. paramamosain.


Subject(s)
Autocrine Communication/drug effects , Bone Morphogenetic Protein 7/pharmacology , Brachyura/cytology , Brachyura/metabolism , Oocytes/cytology , Paracrine Communication/drug effects , Algestone/pharmacology , Animals , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Protein Receptors, Type II/metabolism , Brachyura/drug effects , Cyclin B/metabolism , Female , Oocytes/drug effects , Oocytes/metabolism , Oogenesis/drug effects , Ovarian Follicle/cytology , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , RNA Interference , RNA, Messenger/genetics
17.
PLoS One ; 12(11): e0188067, 2017.
Article in English | MEDLINE | ID: mdl-29141033

ABSTRACT

In crustaceans, muscle growth and development is complicated, and to date substantial knowledge gaps exist. In this study, the claw muscle, hepatopancreas and nervous tissue of the mud crab (Scylla paramamosain) were collected at three fattening stages for sequence by the Illumina sequencing. A total of 127.87 Gb clean data with no less than 3.94 Gb generated for each sample and the cycleQ30 percentages were more than 86.13% for all samples. De Bruijn assembly of these clean data produced 94,853 unigenes, thereinto, 50,059 unigenes were found in claw muscle. A total of 121 differentially expressed genes (DEGs) were revealed in claw muscle from the three fattening stages with a Padj value < 0.01, including 63 genes with annotation. Functional annotation and enrichment analysis showed that the DEGs clusters represented the predominant gene catalog with roles in biochemical processes (glycolysis, phosphorylation and regulation of transcription), molecular function (ATP binding, 6-phosphofructokinase activity, and sequence-specific DNA binding) and cellular component (6-phosphofructokinase complex, plasma membrane, and integral component of membrane). qRT-PCR was employed to further validate certain DEGs. Single nucleotide polymorphism (SNP) analysis obtained 159,322, 125,963 and 166,279 potential SNPs from the muscle transcriptome at stage B, stage C and stage D, respectively. In addition, there were sixteen neuropeptide transcripts being predicted in the claw muscle. The present study provides a comprehensive transcriptome of claw muscle of S. paramamosain during fattening, providing a basis for screening the functional genes that may affect muscle growth of S. paramamosain.


Subject(s)
Crustacea/genetics , Muscles/metabolism , Transcriptome , Animals , Polymorphism, Single Nucleotide
18.
Gen Comp Endocrinol ; 250: 175-180, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28647319

ABSTRACT

Vitellogenin (vtg) synthesis, known as vitellogenesis, is one of most important processes in the ovarian development of oviparous animals. Recently, multiple insulin-like peptides (ILPs) have been reported in crustacean species due to the application of transcriptome sequencing. In this context, the present study reports that the addition of an exogenous ILP, bovine insulin, stimulates vtg (termed Sp-vtg) expression in hepatopancreatic explants from the mud crab, Scylla paramamosain, by in vitro experiments. Homologous genes of key factors in ILP signaling, Sp-PI3K, Sp-Akt, Sp-Rheb and Sp-TOR, have been isolated in S. paramamosain based on a transcriptome database. Further experiments reveal that the RNAi-mediated Sp-Akt gene knockdown and the inhibitors of Sp-PI3K and Sp-TOR block the stimulation of Sp-vtg expression by insulin. The combined results implicate the endogenous ILP and its corresponding signaling in the regulation of Sp-vtg synthesis in S. paramamosain.


Subject(s)
Brachyura/metabolism , Insulin/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Vitellogenins/metabolism , Animals , Brachyura/drug effects , Cattle , DNA, Complementary/genetics , Female , Gene Knockdown Techniques , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Peptides/metabolism
19.
J Genet ; 95(4): 923-932, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27994191

ABSTRACT

Adenosine monophosphate-activated protein kinase (AMPK), an important energy sensor, is crucial for organism survival under adverse conditions. In this study, the roles of this gene under cold stress in a warm-water mud crab, Scylla paramamosain was investigated. The full-length cDNA (SpAMPK) was 1884 bp and its open reading frame of 1566 bp was isolated and characterized. The expressions of SpAMPK detected by quantitative real-time PCR (qRT-PCR) in various tissues revealed that the highest expression was in the hepatopancreas. The profiles of SpAMPK gene in the hepatopancreas, chela muscle and gill were detected when the subadult crabs were exposed to the four temperature conditions of 10, 15, 20 and 25°C. The results showed that the expression patterns of SpAMPK mRNA in the three tissues were significantly higher when crabs were exposed to 15°C than the other three temperature treatments, while at 10°C treatment, the SpAMPK mRNA was lowest among the four temperature treatments. These findings suggested that the high expression of SpAMPK mRNA might initiate ATP-producing pathways to generate energy to cope with cold stress at 15°C treatment, which was slightly below the range of optimum temperatures; while treatment at 10°C, far lower than optima, the low expression of SpAMPK mRNA could reduce the energy expenditure and thus induce the crabs into cold anesthesia. The results of SpAMPK in this study might contribute to the understanding of the molecular mechanism of acclimation to cold hardiness in S. paramamosain.


Subject(s)
AMP-Activated Protein Kinases/genetics , Brachyura/genetics , Cold Temperature , Stress, Physiological/genetics , AMP-Activated Protein Kinases/metabolism , Amino Acid Sequence , Animals , Base Sequence , Brachyura/classification , Cloning, Molecular , DNA, Complementary , Gene Expression Regulation , Organ Specificity/genetics , Phylogeny
20.
Reproduction ; 152(3): 235-43, 2016 09.
Article in English | MEDLINE | ID: mdl-27458256

ABSTRACT

As the precursor of vitellin (Vn), vitellogenin (Vg) has initially been considered as a female-specific protein involved in vitellogenesis, while it was also present in males induced by hormones or organs manipulation. Distinct from vtg1 we previously found in female mud crab Scylla paramamosain, vtg2 was intriguingly detected in male testis under normal physiological conditions in this study. Sequence analysis showed that vtg2 and vtg1 were actually two isoforms of Vg caused by different types of alternative splicing. PCR and in situ hybridization analysis revealed that vtg2 was localized only in the testicular spermatozoa, while Vn was detected in both the spermatozoa of the testis and seminal vesicle. Therefore, we speculated that Vn was initially translated in testicular spermatozoa, then migrated with spermatozoa, and finally stored in the seminal vesicle, where spermatozoa gradually accomplished maturation. We presumed that vtg2/Vn might act as an immune-relevant molecule in the male reproduction system. In the subsequent experiment, the expression of vtg2/Vn in testis was significantly induced in response to lipopolysaccharide (LPS) and lipoteichoic acid (LTA) injection at both transcriptional and translational levels. In the light of the results presented above, we deemed that vtg2/Vn is a novel candidate of immune-relevant molecules involved in immunoprotection during the spermatozoon maturation, and this research helps to open a new avenue for further exploring the role of Vg.


Subject(s)
Brachyura/metabolism , Spermatozoa/immunology , Spermatozoa/metabolism , Testis/metabolism , Vitellogenesis/physiology , Vitellogenins/metabolism , Animals , Base Sequence , Brachyura/genetics , Brachyura/growth & development , Cloning, Molecular , Female , Male , Organ Specificity , Testis/immunology , Vitellogenins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...