Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Sci ; 29(1): 68, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36096815

ABSTRACT

The novel coronavirus disease (COVID-19) pandemic remains a global public health crisis, presenting a broad range of challenges. To help address some of the main problems, the scientific community has designed vaccines, diagnostic tools and therapeutics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The rapid pace of technology development, especially with regard to vaccines, represents a stunning and historic scientific achievement. Nevertheless, many challenges remain to be overcome, such as improving vaccine and drug treatment efficacies for emergent mutant strains of SARS-CoV-2. Outbreaks of more infectious variants continue to diminish the utility of available vaccines and drugs. Thus, the effectiveness of vaccines and drugs against the most current variants is a primary consideration in the continual analyses of clinical data that supports updated regulatory decisions. The first two vaccines granted Emergency Use Authorizations (EUAs), BNT162b2 and mRNA-1273, still show more than 60% protection efficacy against the most widespread current SARS-CoV-2 variant, Omicron. This variant carries more than 30 mutations in the spike protein, which has largely abrogated the neutralizing effects of therapeutic antibodies. Fortunately, some neutralizing antibodies and antiviral COVID-19 drugs treatments have shown continued clinical benefits. In this review, we provide a framework for understanding the ongoing development efforts for different types of vaccines and therapeutics, including small molecule and antibody drugs. The ripple effects of newly emergent variants, including updates to vaccines and drug repurposing efforts, are summarized. In addition, we summarize the clinical trials supporting the development and distribution of vaccines, small molecule drugs, and therapeutic antibodies with broad-spectrum activity against SARS-CoV-2 strains.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Viral Vaccines , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , BNT162 Vaccine , COVID-19/prevention & control , Humans , SARS-CoV-2 , Viral Vaccines/therapeutic use
2.
J Am Chem Soc ; 142(13): 6268-6284, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32131594

ABSTRACT

Mechanisms of enzymatic epoxidation via oxygen atom transfer (OAT) to an olefin moiety is mainly derived from the studies on thiolate-heme containing epoxidases, such as cytochrome P450 epoxidases. The molecular basis of epoxidation catalyzed by nonheme-iron enzymes is much less explored. Herein, we present a detailed study on epoxidation catalyzed by the nonheme iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase, AsqJ. The native substrate and analogues with different para substituents ranging from electron-donating groups (e.g., methoxy) to electron-withdrawing groups (e.g., trifluoromethyl) were used to probe the mechanism. The results derived from transient-state enzyme kinetics, Mössbauer spectroscopy, reaction product analysis, X-ray crystallography, density functional theory calculations, and molecular dynamic simulations collectively revealed the following mechanistic insights: (1) The rapid O2 addition to the AsqJ Fe(II) center occurs with the iron-bound 2OG adopting an online-binding mode in which the C1 carboxylate group of 2OG is trans to the proximal histidine (His134) of the 2-His-1-carboxylate facial triad, instead of assuming the offline-binding mode with the C1 carboxylate group trans to the distal histidine (His211); (2) The decay rate constant of the ferryl intermediate is not strongly affected by the nature of the para substituents of the substrate during the OAT step, a reactivity behavior that is drastically different from nonheme Fe(IV)-oxo synthetic model complexes; (3) The OAT step most likely proceeds through a stepwise process with the initial formation of a C(benzylic)-O bond to generate an Fe-alkoxide species, which is observed in the AsqJ crystal structure. The subsequent C3-O bond formation completes the epoxide installation.


Subject(s)
Aspergillus nidulans/metabolism , Epoxy Compounds/metabolism , Fungal Proteins/metabolism , Ketoglutaric Acids/metabolism , Oxygen/metabolism , Oxygenases/metabolism , Aspergillus nidulans/chemistry , Aspergillus nidulans/enzymology , Crystallography, X-Ray , Epoxy Compounds/chemistry , Fungal Proteins/chemistry , Iron/chemistry , Iron/metabolism , Models, Molecular , Oxygen/chemistry , Oxygenases/chemistry
3.
Org Lett ; 21(8): 2504-2508, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30942076

ABSTRACT

Dicyclopenta[ghi,pqr]perylene (DCPP) is a substructural fragment on the surface of C70 yet not on C60. Unlike its intensely investigated buckybowl cousins, corannulene and sumanene, DCPP is largely ignored due to the lack of synthetic accessibility. This communication describes the first preparation of a DCPP derivative from bay substituted perylene bis(4-(trifluoromethyl)phenyl)methanol as the key cyclization precursor. Further incorporation of indeno substitutions at peri positions was accomplished through Suzuki-Heck benzannulation. DCPP derivatives 4 adopts a planar structure in crystal. On the contrary, indeno DCPP 5 and bis-indeno DCPP 6 adopt the bowl-shaped conformation in both the solid state and solution. Density functional theory (DFT) calculation reveals that the lowest-energy conformations of 4, 5, and 6 are all bowl-shaped. Nevertheless, small bowl-to-bowl inversion barrier for 4 (3.4 kcal/mol) is overcome by the crystal packing force, which leads to its observed planar structure. However, the bowl-shaped structures of 5 and 6 are affirmed by DFT calculation with intermediate and high bowl-to-bowl inversion barriers (10.4 and 18.5 kcal/mol, respectively).

4.
Biochemistry ; 57(12): 1838-1841, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29485871

ABSTRACT

Two non-heme iron enzymes, IsnB and AmbI3, catalyze a novel decarboxylation-assisted olefination to produce indole vinyl isonitrile, an important building block for many natural products. Compared to other reactions catalyzed by this enzyme family, decarboxylation-assisted olefination represents an attractive biosynthetic route and a mechanistically unexplored pathway in constructing a C═C bond. Using mechanistic probes, transient state kinetics, reactive intermediate trapping, spectroscopic characterizations, and product analysis, we propose that both IsnB and AmbI3 initiate stereoselective olefination via a benzylic C-H bond activation by an Fe(IV)-oxo intermediate, and the reaction likely proceeds through a radical- or carbocation-induced decarboxylation to complete C═C bond installation.


Subject(s)
Carboxy-Lyases/chemistry , Iron/chemistry , Ketoglutaric Acids/chemistry , Catalysis
5.
Angew Chem Int Ed Engl ; 57(7): 1831-1835, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29314482

ABSTRACT

AsqJ, an iron(II)- and 2-oxoglutarate-dependent enzyme found in viridicatin-type alkaloid biosynthetic pathways, catalyzes sequential desaturation and epoxidation to produce cyclopenins. Crystal structures of AsqJ bound to cyclopeptin and its C3 epimer are reported. Meanwhile, a detailed mechanistic study was carried out to decipher the desaturation mechanism. These findings suggest that a pathway involving hydrogen atom abstraction at the C10 position of the substrate by a short-lived FeIV -oxo species and the subsequent formation of a carbocation or a hydroxylated intermediate is preferred during AsqJ-catalyzed desaturation.


Subject(s)
Epoxy Compounds/metabolism , Fungal Proteins/metabolism , Peptides/metabolism , Aspergillus nidulans/enzymology , Biocatalysis , Catalytic Domain , Cytochrome P-450 Enzyme System/metabolism , Epoxy Compounds/chemistry , Ferric Compounds/chemistry , Fungal Proteins/chemistry , Ketoglutaric Acids/chemistry , Ketoglutaric Acids/metabolism , Molecular Dynamics Simulation , Peptides/chemistry , Quantum Theory , Stereoisomerism
6.
Org Lett ; 19(5): 1208-1211, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28212039

ABSTRACT

In vitro reconstitution of a newly discovered isonitrile synthase (AmbI1 and AmbI2) and the detection of an elusive intermediate (S)-3-(1H-indol-3-yl)-2-isocyanopropanoic acid 1 in indolyl vinyl isocyanide biogenesis are reported. The characterization of iron/2-oxoglutarate (Fe/2OG) dependent desaturases IsnB and AmbI3 sheds light on the possible mechanism underlying stereoselective alkene installation to complete the biosynthesis of (E)- and (Z)-3-(2-isocyanovinyl)-1H-indole 2 and 5. Establishment of a tractable isonitrile synthase system (AmbI1 and AmbI2) paves the way to elucidate the enigmatic enzyme mechanism for isocyanide formation.


Subject(s)
Cyanides/chemistry , Amino Acids , Molecular Structure
7.
PLoS One ; 8(12): e82877, 2013.
Article in English | MEDLINE | ID: mdl-24376600

ABSTRACT

Despite advances in antibiotic therapy and intensive care, the mortality caused by systemic inflammatory response syndrome and severe sepsis remains high. The use of anti-inflammatory agents to attenuate inflammatory response during acute systemic inflammatory reactions may improve survival rates. Here we show that a newly synthesized 2-pyridone compound (FJU-C4) can suppress the expression of late inflammatory mediators such as iNOS and COX-2 in murine macrophages. The pro-inflammatory cytokines, including TNFα, IL-1ß, and IL-6, were dose-dependently suppressed by FJU-C4 both in mRNA and protein levels. In addition, the expression of TNFα was inhibited from as early as 2 hours after exposure to LPS stimulation. The production of mature pro-inflammatory cytokines was also suppressed by pretreatment with FJU-C4 in either cell culture medium or mice serum when stimulated by LPS. FJU-C4 prolongs mouse survival and prevents mouse death from LPS-induced systemic inflammation when the dose of FJU-C4 is over 5 mg/kg. The activities of ERK, JNK, and p38MAPK were induced by LPS stimulation on murine macrophage cell line, but only p38MAPK signaling was dramatically suppressed by pretreatment with the FJU-C4 compound in a dose-dependent manner. NF-κB activation also was suppressed by FJU-C4 compound. These findings suggest that the FJU-C4 compound may act as a promising therapeutic agent against inflammatory diseases by inhibiting the p38MAPK and NF-κB signaling pathway.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , NF-kappa B/genetics , Pyridones/pharmacology , Systemic Inflammatory Response Syndrome/drug therapy , p38 Mitogen-Activated Protein Kinases/genetics , Animals , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Female , Gene Expression Regulation , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/antagonists & inhibitors , Interleukin-6/genetics , Interleukin-6/metabolism , Lipopolysaccharides , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , Mice , Mice, Inbred BALB C , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Signal Transduction , Systemic Inflammatory Response Syndrome/chemically induced , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/pathology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
8.
Molecules ; 18(7): 8243-56, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23857127

ABSTRACT

Starting from a thio-substituted 4-quinolizidinone, a series of C-6 alkylated derivatives with a trans C-6, C-9a relationship was synthesized. Further transformations led to the first stereoselective total synthesis of the structure proposed for (±)-quinolizidine 195C, the major alkaloid isolated from the skin extracts of the Madagascan frog Mantella betsileo. Since the spectral data of the synthetic and natural products differed significantly, the true structure of (±)-quinolizidine 195C remains uncertain.


Subject(s)
Biological Products/chemical synthesis , Quinolizidines/chemistry , Quinolizidines/chemical synthesis , Alkaloids/analysis , Alkaloids/chemistry , Alkylation , Animals , Biological Products/chemistry , Cycloaddition Reaction , Piperidines/chemistry , Ranidae , Skin/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...