Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicon ; 247: 107812, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38908527

ABSTRACT

"Tannins" are compounds that belong to a group of secondary metabolites found in plants. They have a polyphenolic nature and exhibit active actions as first line defenses against invading pathogens. Several studies have demonstrated the multiple activities of tannins, highlighting their effectiveness as broad-spectrum antimicrobial agents. Tannins have reported as antibacterial, antifungal, and antiviral compounds by preventing enzymatic activities and inhibiting the synthesis of nucleic acids. Additionally, tannins primarily strengthen the plant cell wall, making it almost impenetrable to harmful pathogens. Most tannins are synthesized via the phenylpropanoid pathway to become secondary metabolites. Increased uptake of tannins has the potential to provide permanent immunity to subsequent infections by strengthening cell walls and producing antimicrobial compounds. Tannins also demonstrate a synergistic response with other defense-related molecules, such as phytoalexins and pathogenesis-related proteins, including antimicrobial peptides. Studying the mechanisms mediated by tannins on pathogen behaviors would be beneficial in stimulating plant defense against pathogens. This understanding could help explain the occurrence of diseases and outbreaks and enable potential mitigation in both natural and agricultural ecosystems.


Subject(s)
Anti-Infective Agents , Tannins , Tannins/pharmacology , Anti-Infective Agents/pharmacology , Plants
2.
Plant Physiol Biochem ; 211: 108718, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733939

ABSTRACT

Plant secondary metabolites (PSMs) are a large class of structurally diverse molecules, mainly consisting of terpenoids, phenolic compounds, and nitrogen-containing compounds, which play active roles in plant development and stress responses. The biosynthetic processes of PSMs are governed by a sophisticated regulatory network at multiple levels. Noncoding RNAs (ncRNAs) such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) may serve as post-transcriptional regulators for plant secondary metabolism through acting on genes encoding either transcription factors or participating enzymes in relevant metabolic pathways. High-throughput sequencing technologies have facilitated the large-scale identifications of ncRNAs potentially involved in plant secondary metabolism in model plant species as well as certain species with enriched production of specific types of PSMs. Moreover, a series of miRNA-target modules have been functionally characterized to be responsible for regulating PSM biosynthesis and accumulation in plants under abiotic or biotic stresses. In this review, we will provide an overview of current findings on the ncRNA-mediated regulation of plant secondary metabolism with special attention to its participation in plant stress responses, and discuss possible issues to be addressed in future fundamental research and breeding practice.


Subject(s)
Plants , RNA, Plant , RNA, Untranslated , Secondary Metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Secondary Metabolism/genetics , Plants/metabolism , Plants/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
3.
Front Plant Sci ; 14: 1294989, 2023.
Article in English | MEDLINE | ID: mdl-38264033

ABSTRACT

Introduction: As one of the important sources of food for human beings, fruits have been extensively studied. To better guide basic and applied research, it is urgent to conduct a systematic analysis of these studies based on extensive literature collection. Methods: Based on the Web of Science Core Collection database, this study uses R language and CiteSpace to conduct bibliometric analysis and data mining on the literatures related to fruit quality from January 2013 to June 2023. Results: The results indicated that among various fruits, tomatoes have been most frequently studied with special interests in photosynthesis, fruit development, and molecular breeding. The research direction primarily focused on fruit resistance and storage characteristics. Among the indicators related to fruit quality, antioxidant activity has the highest co-occurrence with other indicators of fruit quality, especially with nutrients such as anthocyanins, phenolic substances, sugars, and fruit firmness. Discussion: Currently, adaptation to stress and antioxidant activity are recognized as prominent research focal points in this field. Fruit morphology, particularly fruit size, irrigation methods, application of molecular technology, and infection prevention, represent potential areas of interests in future research on fruit quality.

SELECTION OF CITATIONS
SEARCH DETAIL