Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Mitochondrial DNA B Resour ; 9(9): 1201-1206, 2024.
Article in English | MEDLINE | ID: mdl-39286475

ABSTRACT

The filamentous fungus Talaromyces liani (Kamyschko) Yilmaz, Frisvad & Samson, 2014, has attracted considerable interest in biotechnology due to its diverse industrial applications and physiological characteristics. However, the mitochondrial genome of T. liani remains uncharacterized. Here, we present the complete mitochondrial genome of T. liani, comprising 38,000 bp with a GC content of 24.61%. This genome includes 15 core protein-coding genes, 4 independent ORFs, 6 intronic ORFs, 26 tRNAs, and 2 rRNA genes. Phylogenetic analysis using Bayesian inference (BI) revealed the evolutionary relationships among 15 fungi from Eurotiales, strongly supporting distinct clades and indicating that T. liani most closely related to T. pinophilus.

2.
Foods ; 13(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39272420

ABSTRACT

Addressing the challenge of blood glucose fluctuations triggered by the ingestion of pea starch, we have adopted an eco-friendly strategy utilizing microwave irradiation to synthesize the novel pea starch-tea polyphenol complexes. These complexes exhibit high swelling capacity and low solubility, and their thermal profile with low gelatinization temperature and enthalpy indicates adaptability to various processing conditions. In vitro digestion studies showed that these complexes have a small amount of rapidly digestible starch and a large amount of resistant starch, leading to a slower digestion rate. These features are particularly advantageous for diabetics, mitigating glycemic excursions. Structurally, the pea starch-tea polyphenol complexes exhibited a B + V-shaped dense network with low crystallinity, high orderliness, and a prominent double helix content, enhancing its stability and functionality in food applications. In summary, these innovative complexes served as a robust platform for developing low glycemic index foods, catering to the nutritional needs of diabetics. It offers an environmentally sustainable approach to food processing, fostering human well-being and propelling innovation in the food industry.

3.
Food Chem X ; 24: 101815, 2024 Dec 30.
Article in English | MEDLINE | ID: mdl-39290753

ABSTRACT

Thinned unripe kiwifruits (TUK) are considered the major agro by-products in kiwifruit production. To promote their potential applications, polyphenols and biological effects of unripe fruits from nine commercial kiwifruit cultivars were compared. Our findings showed that TUK were rich in bioactive polyphenols, which varied greatly by different cultivars. Indeed, catechin, epicatechin, procyanidin PB1, procyanidin B2, protocatechuic acid, neochlorogenic acid, and gallic acid were measured as the major phenolic components in most TUK, with the highest levels observed in 'Hongao' and 'Cuiyu' cultivars. Furthermore, TUK exerted strong in vitro antioxidant capacities, inhibitory effects on digestive enzymes, and anti-inflammatory activities. Particularly, their stronger antioxidant effects and inhibitory effects on digestive enzymes were probably attributed to their higher contents of phenolic compounds, especially procyanidin B2. Collectively, our findings reveal that TUK are potential resources of valuable polyphenols, which can be exploited as natural antioxidants and natural inhibitors of α-glucosidase and α-amylase.

4.
Food Chem ; 461: 140907, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39173266

ABSTRACT

Tartary buckwheat sprouts are highly valued by consumers for their superior nutritional content. Ionic titanium (Ti) has been shown to enhance crop growth and improve nutritional quality. However, there is limited research on the impact of ionic Ti on the nutritional quality of Tartary buckwheat sprouts. This study cultivated Tartary buckwheat sprouts with ionic Ti and found that the high concentration of ionic Ti significantly increased the contents of chlorophyll a, chlorophyll b, and carotenoids (increased by 25.5%, 27.57%, and 15.11%, respectively). The lower concentration of ionic Ti has a higher accumulation of total flavonoids and total polyphenols. Metabolomics analysis by LC-MS revealed 589 differentially expressed metabolites and 54 significantly different metabolites, enriching 82 metabolic pathways, especially including amino acid biosynthesis and flavonoid biosynthesis. This study shows that ionic Ti can promote the growth of Tartary buckwheat sprouts, improve nutritional quality, and have huge development potential in food production.


Subject(s)
Amino Acids , Fagopyrum , Flavonoids , Nutritive Value , Titanium , Fagopyrum/chemistry , Fagopyrum/growth & development , Fagopyrum/metabolism , Flavonoids/metabolism , Flavonoids/analysis , Flavonoids/chemistry , Amino Acids/metabolism , Amino Acids/analysis , Titanium/chemistry , Titanium/metabolism , Seedlings/growth & development , Seedlings/chemistry , Seedlings/metabolism , Chlorophyll/metabolism , Chlorophyll/analysis , Chlorophyll/chemistry
5.
Plants (Basel) ; 13(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39124279

ABSTRACT

Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) is a crop of significant interest due to its nutritional value and resilience to drought conditions. However, drought, particularly following flowering, is a major factor contributing to yield reduction. This research employed two distinct Tartary buckwheat genotypes to investigate the effects of post-anthesis drought on growth and physicochemical characteristics. The study aimed to elucidate the response of Tartary buckwheat to drought stress. The findings indicated that post-anthesis drought adversely impacted the growth, morphology, and biomass accumulation of Tartary buckwheat. Drought stress enhanced the maximum photosynthetic capacity (Fv/Fm) and light protection ability (NPQ) of the 'Xiqiao-2' genotype. In response to drought stress, 'Dingku-1' and 'Xiqiao-2' maintained osmotic balance by accumulating soluble sugars and proline, respectively. Notably, 'Xiqiao-2' exhibited elevated levels of flavonoids and polyphenols in its leaves, which helped mitigate oxidative damage caused by drought. Furthermore, rewatering after a brief drought period significantly improved plant height, stem diameter, and biomass accumulation in 'Dingku-1'. Overall, 'Xiqiao-2' demonstrated greater long-term tolerance to post-anthesis drought, while 'Dingku-1' was less adversely affected by short-term post-anthesis drought.

6.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38993144

ABSTRACT

Quinoa (Chenopodium quinoa Willd) is widely regarded as a versatile pseudo-cereal native to the Andes Mountains in South America. It has gained global recognition as a superfood due to its rich nutritional profile. While quinoa grains are well-known, there is an undiscovered potential in quinoa greens, such as sprouts, leaves, and microgreens. These verdant parts of quinoa are rich in a diverse array of essential nutrients and bioactive compounds, including proteins, amino acids, bioactive proteins, peptides, polyphenols, and flavonoids. They have powerful antioxidant properties, combat cancer, and help prevent diabetes. Quinoa greens offer comparable or even superior benefits when compared to other sprouts and leafy greens, yet they have not gained widespread recognition. Limited research exists on the nutritional composition and biological activities of quinoa greens, underscoring the necessity for thorough systematic reviews in this field. This review paper aims to highlight the nutritional value, bioactivity, and health potential of quinoa greens, as well as explore their possibilities within the food sector. The goal is to generate interest within the research community and promote further exploration and wider utilization of quinoa greens in diets. This focus may lead to new opportunities for enhancing health and well-being through innovative dietary approaches.

7.
Ann Hematol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012517

ABSTRACT

This study aimed to assess the prognostic value of 18F-fluorodeoxyglucose positron emission tomography/computer tomography (18F-FDG PET/CT) in patients with relapsed multiple myeloma (MM). Fifty-one consecutive patients with relapsed MM were enrolled in this retrospective study. 18F-FDG parameters based on the Italian Myeloma Criteria for PET Use (IMPeTUs) and clinical data were analyzed for overall survival (OS) and progression-free survival (PFS). The Cox proportional risk model was used for univariate and multivariate analysis, and Kaplan-Meier survival curves were used for survival analysis. The median length of follow-up was 20 months (IQR, 5-29 months), the median PFS for the entire cohort was 8 months (IQR, 3-17 months) and the median OS was 21 months (IQR, 8-49 months). Multivariate survival analysis demonstrated that the Deauville score of BM > 3 [HR 2.900, 95% CI (1.011, 8.319), P = 0.048] and the presence of EMD [HR 3.134, 95% CI (1.245, 7.891), P = 0.015] were independent predictors of poor PFS. The presence of EMD [HR 12.777, 95% CI (1.825, 89.461), P = 0.010] and the reduced platelets count [HR 7.948, 95% CI (1.236, 51.099), P = 0.029] were adversely associated with OS. 18F-FDG PET/CT parameters based on IMPeTUs have prognostic significance in patients with relapsed MM.

8.
Small ; : e2403035, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030885

ABSTRACT

Organic single crystals possess distinct advantages due to their highly ordered molecular structures, resulting in improved stability, enhanced carrier mobility, and superior optical characteristics. However, their mechanical rigidity and brittleness impede the applications in flexible and wearable optoelectronic devices. Here, photoluminescence (PL) emission from 2,6-diphenylanthracene (DPA) single crystals is studied under tensile strain, which shows PL enhancement by more than two times with a strain of ≈1.42%. Such a tension induced PL enhancement is reversible, exhibiting no clear optical degradations during 100 cycles of bending and recovery processes. Theoretical calculations reveal that the deformation of molecular structure under strain induces a decrease of the dihedral between anthracene and benzene moieties in DPA molecules. Further, the increased molecular conjugation enhances the molecular oscillator strength, leading to the brightened PL emission. Meanwhile, with the decreased dihedral, the molecular vibrations in DPA crystals are suppressed, which can reduce the non-radiative decay rate. In contrast, no tension induced PL enhancement is observed in polycrystalline DPA thin films as the strain can be released via the grain boundaries. This study highlights the superior optical performance of DPA single crystals under strain field, which will provide new possibilities for DPA-based flexible devices.

9.
NPJ Digit Med ; 7(1): 106, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693429

ABSTRACT

Existing natural language processing (NLP) methods to convert free-text clinical notes into structured data often require problem-specific annotations and model training. This study aims to evaluate ChatGPT's capacity to extract information from free-text medical notes efficiently and comprehensively. We developed a large language model (LLM)-based workflow, utilizing systems engineering methodology and spiral "prompt engineering" process, leveraging OpenAI's API for batch querying ChatGPT. We evaluated the effectiveness of this method using a dataset of more than 1000 lung cancer pathology reports and a dataset of 191 pediatric osteosarcoma pathology reports, comparing the ChatGPT-3.5 (gpt-3.5-turbo-16k) outputs with expert-curated structured data. ChatGPT-3.5 demonstrated the ability to extract pathological classifications with an overall accuracy of 89%, in lung cancer dataset, outperforming the performance of two traditional NLP methods. The performance is influenced by the design of the instructive prompt. Our case analysis shows that most misclassifications were due to the lack of highly specialized pathology terminology, and erroneous interpretation of TNM staging rules. Reproducibility shows the relatively stable performance of ChatGPT-3.5 over time. In pediatric osteosarcoma dataset, ChatGPT-3.5 accurately classified both grades and margin status with accuracy of 98.6% and 100% respectively. Our study shows the feasibility of using ChatGPT to process large volumes of clinical notes for structured information extraction without requiring extensive task-specific human annotation and model training. The results underscore the potential role of LLMs in transforming unstructured healthcare data into structured formats, thereby supporting research and aiding clinical decision-making.

10.
Nanoscale ; 16(20): 10038-10047, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38712536

ABSTRACT

MxCo3-xO4 co-catalysed photoanodes with high potential for improvement in PEC water-oxidizing properties are reported. However, it is difficult to control the recombination of photogenerated carriers at the interface between the catalyst and cocatalyst. Here, an ultra-thin MgO passivation layer was introduced into the MxCo3-xO4/BiVO4 coupling system to construct a ternary composite photoanode Co2AlO4/MgO/BiVO4. The photocurrent density of the electrode is 3.52 mA cm-2, which is 3.2 times that of BiVO4 (at 1.23 V vs. RHE). The photocurrent is practically increased by 0.86 mA cm-2 and 1.56 mA cm-2 in comparison with that of Co2AlO4/BiVO4 and MgO/BiVO4 electrodes, respectively. Meanwhile, the Co2AlO4/MgO/BiVO4 electrode has the highest charge separation efficiency, the lowest charge transfer resistance (Rct) and best stability. The excellent PEC performance could be attributed to the inhibitive effect provided by the MgO passivation layer that efficaciously suppresses the electron-hole recombination at the interface and drives the hole transfer outward, which is induced by Co2AlO4 to capture the electrode/electrolyte interface for efficient water oxidation reaction. In order to understand the origin of this improvement, first-principles calculations with density functional theory (DFT) were performed. The theoretical investigation converges to our experimental results. This work proposes a novel idea for restraining the recombination of photogenerated carriers between interfaces and the rational design of efficient photoanodes.

11.
Food Res Int ; 187: 114395, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763655

ABSTRACT

Pectic polysaccharides are one of the most vital functional ingredients in quinoa microgreens, which exhibit numerous health-promoting benefits. Nevertheless, the detailed information about the structure-function relationships of pectic polysaccharides from quinoa microgreens (QMP) remains unknown, thereby largely restricting their applications as functional foods or fortified ingredients. Therefore, to unveil the possible structure-function relationships of QMP, the mild alkali de-esterification was utilized to modify QMP, and then the correlations of esterification degrees of native and modified QMPs to their biological functions were systematically investigated. The results showed that the modified QMPs with different esterification degrees were successfully prepared by the mild alkali treatment, and the primary chemical structure (e.g., compositional monosaccharides and glycosidic linkages) of the native QMP was overall stable after the de-esterified modification. Furthermore, the results revealed that the antioxidant capacity, antiglycation effect, prebiotic potential, and immunostimulatory activity of the native QMP were negatively correlated to its esterification degree. In addition, both native and modified QMPs exerted immunostimulatory effects through activating the TLR4/NF-κB signaling pathway. These results are conducive to unveiling the precise structure-function relationships of QMP, and can also promote its applications as functional foods or fortified ingredients.


Subject(s)
Antioxidants , Chenopodium quinoa , Esterification , Chenopodium quinoa/chemistry , Structure-Activity Relationship , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Pectins/chemistry , Polysaccharides/chemistry , Prebiotics , Animals , Mice , Functional Food , RAW 264.7 Cells , NF-kappa B/metabolism
12.
Heliyon ; 10(4): e25980, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38404826

ABSTRACT

In this study, we investigated the effect of solid-state fermentation of Pleurotus eryngii on the composition and antioxidant activity of Tartary buckwheat (TB). Firstly, the solid-state fermentation of P. eryngii mycelium with buckwheat was carried out, and the fermentation process was explored. The results of the extraction process and method selection experiments showed that the percolation extraction method was superior to the other two methods. The results of extraction rate, active components and antioxidant activity measurements before and after fermentation of TB extract showed that the extraction rate increased about 1.7 times after fermentation. Total flavonoids, rutin and triterpene contents were increased after fermentation compared to control. Meanwhile, LC-MS results showed an increase in the content of the most important substances in the fermented TB extract and the incorporation of new components, such as oleanolic acid, ursolic acid, amino acids, and D-chiral inositol. The fermented TB extract showed stronger antioxidant activity, while the protein and amino acid contents increased by 1.93-fold and 1.94-fold, respectively. This research was the first to use P. eryngii to ferment TB and prepared a lyophilized powder that could be used directly using vacuum freeze-drying technology. Not only the use of solid-state fermentation technology advantages of edible fungi to achieve value-added buckwheat, but also to broaden the scope of TB applications. This study will provide ideas and directions for the development and application of edible mushroom fermentation technology and TB.

13.
Front Immunol ; 14: 1291379, 2023.
Article in English | MEDLINE | ID: mdl-38022512

ABSTRACT

Understanding the determinants of host and tissue tropisms among parasites of veterinary and medical importance has long posed a substantial challenge. Among the seven species of Eimeria known to parasitize the chicken intestine, a wide variation in tissue tropisms has been observed. Prior research suggested that microneme protein (MIC) composed of microneme adhesive repeat (MAR) domain responsible for initial host cell recognition and attachment likely dictated the tissue tropism of Eimeria parasites. This study aimed to explore the roles of MICs and their associated MARs in conferring site-specific development of E. acervuline, E. maxima, and E. mitis within the host. Immunofluorescence assays revealed that MIC3 of E. acervuline (EaMIC3), MIC3 of E. maxima (EmMIC3), MIC3 of E. mitis (EmiMIC3), MAR3 of EaMIC3 (EaMIC3-MAR3), MAR2 of EmMIC3 (EmMIC3-MAR2), and MAR4 of EmiMIC3 (EmiMIC3-MAR4), exhibited binding capabilities to the specific intestinal tract where these parasites infect. In contrast, the invasion of sporozoites into host intestinal cells could be significantly inhibited by antibodies targeting EaMIC3, EmMIC3, EmiMIC3, EaMIC3-MAR3, EmMIC3-MAR2, and EmiMIC3-MAR4. Substitution experiments involving MAR domains highlighted the crucial roles of EaMIC3-MAR3, EmMIC3-MAR2, and EmiMIC3-MAR4 in governing interactions with host ligands. Furthermore, animal experiments substantiated the significant contribution of EmiMIC3, EmiMIC3-MAR4, and their polyclonal antibodies in conferring protective immunity to Eimeria-affiliated birds. In summary, EaMIC3, EmMIC3, and EmiMIC3 are the underlying factors behind the diverse tissue tropisms exhibited by E. acervuline, E. maxima, and E. mitis, and EaMIC3-MAR3, EmMIC3-MAR2, and EmiMIC3-MAR4 are the major determinants of MIC-mediated tissue tropism of each parasite. The results illuminated the molecular basis of the modes of action of Eimeria MICs, thereby facilitating an understanding and rationalization of the marked differences in tissue tropisms among E. acervuline, E. maxima, and E. mitis.


Subject(s)
Coccidiosis , Eimeria , Poultry Diseases , Animals , Microneme , Proteins , Chickens/parasitology
14.
Angew Chem Int Ed Engl ; 62(46): e202310741, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37706280

ABSTRACT

Removal of trace impurities for natural gas purification coupled with waste gas conversion is highly desired in industry. We here report a type of porous ionic liquids (PILs) that can realize the continuous flow separation of CH4 /CO2 /H2 S and the conversion of the captured H2 S to useful products. The PILs are synthesized through a step-by-step surface modification of ionic liquids (ILs) onto UiO-66-OH nanocrystals. The introduction of free tertiary amine groups on the nanocrystal surface endows these PILs with an exceptional ability to enrich H2 S from CO2 and CH4 with impressive selectivity, while the permanent pores of UiO-66-OH act as containers to store an exceptionally higher amount of the selectively captured H2 S than the corresponding nonporous ILs. Simultaneously, the tertiary amines as dual functional moieties offer effective catalytic sites for the conversion of the H2 S stored in PILs into 3-mercaptoisobutyric acid, a key intermediate required for the synthesis of Captopril (an antihypertensive drug). Molecular dynamics, density functional theory calculations and Grand Canonical Monte Carlo simulations help understand both the mechanisms of separation and catalysis performance, confirming that the tertiary amines as well as the permanent pores in UiO-66-OH play vital roles in the whole procedure.

15.
Sensors (Basel) ; 23(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37631661

ABSTRACT

In this paper, a liquid crystal-modulated metastructure sensor (MS) is proposed that can detect the refractive index (RI) of a liquid and change the detection range under different applied voltages. The regulation of the detection range is based on the different bias states of the liquid crystal at different voltages. By changing the sample in the cavity that is to be detected, the overall electromagnetic characteristics of the device in the resonant state are modified, thus changing the position of the absorption peaks so that different RI correspond to different absorption peaks, and finally realizing the sensing detection. The refractive index unit is denoted as RIU. The range of the refractive index detection is 1.414-2.828 and 2.121-3.464, and the corresponding absorption peak variation range is 0.8485-1.028 THz and 0.7295-0.8328 THz, with a sensitivity of 123.8 GHz/RIU and 75.6 GHz/RIU, respectively. In addition, an approach to optimizing resonant absorption peaks is explored, which can suppress unwanted absorption generated during the design process by analyzing the energy distribution and directing the current flow on the substrate. Four variables that have a more obvious impact on performance are listed, and the selection and change trend of the numerical values are focused on, fully considering the errors that may be caused by manufacturing and actual use. At the same time, the incident angle and polarization angle are also included in the considered range, and the device shows good stability at these angles. Finally, the influence of the number of resonant rings on the sensing performance is also discussed, and its conclusion has guiding value for optimizing the sensing demand. This new liquid crystal-modulated MS has the advantages of a small size and high sensitivity and is expected to be used for bio-detection, sensing, and so on. All results in this work were obtained with the aid of simulations based on the finite element method.


Subject(s)
Liquid Crystals , Commerce , Refraction, Ocular
16.
Front Neurol ; 14: 1192118, 2023.
Article in English | MEDLINE | ID: mdl-37305765

ABSTRACT

Autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy is a rare autoimmune disorder. Reversible splenial lesion syndrome (RESLES) is a transient clinical-imaging syndrome characterized by specific magnetic resonance imaging (MRI) pattern. A 58-year-old man was admitted with a fever, headache, and confusion for 1 week. Brain MRI showed abnormal leptomeningeal enhancement in the brainstem and high signal intensity on diffusion-weighted MRI of the corpus callosum. Anti-GFAP antibody was positive in the serum and cerebrospinal fluid analysis. This patient significantly improved and had no relapse after glucocorticoid and immune suppressant therapy. A repeated brain MRI revealed the lesion in the corpus callosum and abnormal leptomeningeal enhancement in the brainstem disappeared. Linear perivascular radial enhancement is the characteristic pattern of autoimmune GFAP astrocytopathy which is rarely coexistent with RESLES.

17.
J Colloid Interface Sci ; 649: 416-425, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37354798

ABSTRACT

The unique characteristics and diverse applications of 2D transition metal phosphides have aroused significant interest. In this paper, we successfully prepared 2D NiCoP modified ZnCdS composite. The NiCoP nanosheets were successfully obtained by phosphating layered double hydroxide (LDH) precursor. The results show that the ZnCdS-8%NiCoP has the highest photocatalytic performance among all the composite photocatalysts with the H2 evolution rate of 1370.1 µmol h-1, which is 17.9 folds higher than obtained with pure ZnCdS. Detailed analysis reveal that NiCoP nanosheets functions as an excellent electron acceptor, speeding up the directed migration of electrons. Furthermore, the rational mechanism of photocatalytic has been presented based on density function theory (DFT) calculations, which is well congruent with experimental results. Our research offers a simple, environmentally benign, and scalable technique for making highly effective photocatalysts, as well as a novel perspective on transition metal phosphides rational design.

18.
Sensors (Basel) ; 23(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37177595

ABSTRACT

The material removal rate (MRR) is an important variable but difficult to measure in the chemical-mechanical planarization (CMP) process. Most data-based virtual metrology (VM) methods ignore the large number of unlabeled samples, resulting in a waste of information. In this paper, the semi-supervised deep kernel active learning (SSDKAL) model is proposed. Clustering-based phase partition and phase-matching algorithms are used for the initial feature extraction, and a deep network is used to replace the kernel of Gaussian process regression so as to extract hidden deep features. Semi-supervised regression and active learning sample selection strategies are applied to make full use of information on the unlabeled samples. The experimental results of the CMP process dataset validate the effectiveness of the proposed method. Compared with supervised regression and co-training-based semi-supervised regression algorithms, the proposed model has a lower mean square error with different labeled sample proportions. Compared with other frameworks proposed in the literature, such as physics-based VM models, Gaussian-process-based regression models, and stacking models, the proposed method achieves better prediction results without using all the labeled samples.

19.
Food Res Int ; 164: 112334, 2023 02.
Article in English | MEDLINE | ID: mdl-36737927

ABSTRACT

Tartary buckwheat (TB) sprout is a kind of novel nutritional vegetable, but its consumption was limited by low biomass and thin hypocotyl. The tetraploid TB sprouts was considered to be able to solve this issue. However, the nutritional quality of tetraploid TB sprouts and differences between conventional (diploid) and tetraploid TB sprouts remain unclear. In this study, the morphological traits, nutrient compositions and metabolome changes of diploid and tetraploid TB sprouts were analyzed. The water, pigments and minerals contents of TB sprouts increased during sprouting, while the contents of total soluble protein, reducing sugar, cellulose, and total phenol decreased. Compared with diploid sprouts, tetraploid sprouts had higher biomass and thicker hypocotyl. Tetraploid sprouts had higher ash and carotenoid contents, but had lower phenol and flavonoid accumulation. 677 metabolites were identified in TB sprouts by UPLC-MS analysis, including 62 diseases-resistance metabolites and 43 key active ingredients. Some key bioactive metabolites, such as rimonabant, quinapril, 1-deoxynojirimycin and miglitol, were identified. 562 differential expressed metabolites (DEMs) were identified during sprouting with seven accumulation patterns, and five hormones were found to be involved in sprout development. Additionally, 209 DEMs between diploid and tetraploid sprouts were found, and some key bioactive metabolites were induced by chromosome doubling such as mesoridazine, amaralin, atractyloside A, rhamnetin and Qing Hau Sau. This work lays a basis for the development and utilization of TB sprouts and provides evidence for the selection of tetraploid varieties to produce sprouts with high biomass and quality.


Subject(s)
Fagopyrum , Fagopyrum/genetics , Diploidy , Chromatography, Liquid , Tetraploidy , Tandem Mass Spectrometry , Metabolomics , Nutrients
20.
Plant Physiol Biochem ; 196: 647-660, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36796235

ABSTRACT

Tartary buckwheat (Fagopyrum tataricum Garetn.), a dicotyledonous herbaceous crop, has good adaptation to low nitrogen (LN) condition. The plasticity of roots drives the adaption of Tartary buckwheat under LN, but the detailed mechanism behind the response of TB roots to LN remains unclear. In this study, the molecular mechanism of two Tartary buckwheat genotypes' roots with contrasting sensitivity in response to LN was investigated by integrating physiological, transcriptome and whole-genome re-sequencing analysis. LN improved primary and lateral root growth of LN-sensitive genotype, whereas the roots of LN-insensitive genotype showed no response to LN. 2, 661 LN-responsive differentially expressed genes (DEGs) were identified by transcriptome analysis. Of these genes, 17 N transport and assimilation-related and 29 hormone biosynthesis and signaling genes showed response to LN, and they may play important role in Tartary buckwheat root development under LN. The flavonoid biosynthetic genes' expression was improved by LN, and their transcriptional regulations mediated by MYB and bHLH were analyzed. 78 transcription factors, 124 small secreted peptides and 38 receptor-like protein kinases encoding genes involved in LN response. 438 genes were differentially expressed between LN-sensitive and LN-insensitive genotypes by comparing their transcriptome, including 176 LN-responsive DEGs. Furthermore, nine key LN-responsive genes with sequence variation were identified, including FtNRT2.4, FtNPF2.6 and FtMYB1R1. This paper provided useful information on the response and adaptation of Tartary buckwheat root to LN, and the candidate genes for breeding Tartary buckwheat with high N use efficiency were identified.


Subject(s)
Fagopyrum , Transcriptome , Transcriptome/genetics , Fagopyrum/genetics , Fagopyrum/metabolism , Phylogeny , Plant Proteins/metabolism , Plant Breeding , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL