Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Front Vet Sci ; 11: 1341920, 2024.
Article in English | MEDLINE | ID: mdl-38694480

ABSTRACT

Rainbow trout is a widely farmed economical cold-water fish worldwide, but the prevalence of infectious hematopoietic necrosis virus (IHNV) presents a severe risk to the aquaculture industry, resulting in high mortality and huge economic losses. In this study, the impacts of different concentrations (0, 10, 20, and 30 g/kg) of Chinese herbal medicine mixture (CHMM) on the immune response and resistance of rainbow trout to IHNV infection were evaluated. The results show that CHMM noticeably increased (P < 0.05) T-SOD, CAT, AST, ALT, ACP, and AKP activities and decreased MDA content. NF-κB, TNF-α, IFN-ß, IL-1ß, JAK1, HSP70, and HSP90 expressions were significantly upregulated (P < 0.05) in all CHMMs, while SOCS2 expression was downregulated (P < 0.05). Following infection with IHNV, feeding rainbow trout with varying amounts of CHMM resulted in noticeably increased (P < 0.05) T-SOD, ACP, and AKP activities and significantly decreased (P < 0.05) MDA content and AST and ALT activities. TNF-α, IFN-ß, IL-1ß, HSP70, and HSP90 expressions were significantly upregulated (P < 0.05) in all CHMMs, while the expressions of JAK1 and SOCS2 were downregulated. The expression level of the IHNV G protein gene at a dosage of 20 g/kg was notably lower than that of the other CHMM feeding groups. This study provides a solid scientific basis for promoting CHMM as an immunostimulant for boosting antiviral immunity in rainbow trout.

2.
Ecotoxicol Environ Saf ; 278: 116347, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38691881

ABSTRACT

Hypoxia, largely triggered by global warming and water contamination, has become an environmental issue of great concern, posing a great threat to aquatic ecosystem. As one of the world's most economically important fish, rainbow trout (Oncorhynchus mykiss) is extremely intolerant of hypoxic environments, however, little is known about the roles of non-coding RNAs (ncRNAs) in the response of rainbow trout to hypoxia stress. Herein, effects of moderate (Tm12L) and severe hypoxia for 12 h (Ts12L) and 12 h reoxygenation on histology, biochemical parameters (antioxidant, metabolism and immunity) and transcriptome (lncRNA, miRNA and mRNA) in rainbow trout liver were investigated. We further validated the regulatory relationships between LOC110519952, novel-m0023-5p and glut1a via dual­luciferase reporter, overexpression and silencing assays. Compared with Tm12L, the liver in Ts12L showed more severe oxidative damage. Anaerobic, lipid and protein metabolism was enhanced under hypoxia stress, especially in Ts12L. We also found that Tm12L could strengthen innate immune response, which was inhibited in Ts12L. Besides, several hypoxia-related genes (glut1a, vegfaa, hmox, epoa, foxo1a and igfbp1) and ceRNA networks were identified from 1824, 427 and 545 differentially expressed mRNAs, miRNAs and lncRNAs, including LOC118965299-novel-m0179-3p-epoa, LOC110519952-novel-m0023-5p-glut1a, MSTRG.7382.2-miR-184-y-hmox and LOC110520012-miR-206-y-vegfaa. Through in vitro and in vivo functional analysis, we demonstrated that glut1a is a target of novel-m0023-5p, and LOC110519952 can positively regulate glut1a by targeting novel-m0023-5p. Introduction of LOC110519952 could attenuate the promoting effects of novel-m0023-5p on rainbow trout liver cell viability and proliferation. This study highlights the differences in the regulatory mechanism of rainbow trout under different concentrations of hypoxia stress and provides valuable data for further research on the molecular mechanisms of fish adaptation to hypoxic environments.


Subject(s)
Oncorhynchus mykiss , Transcriptome , Animals , Oncorhynchus mykiss/genetics , MicroRNAs/genetics , Liver/metabolism , Stress, Physiological , Hypoxia , RNA, Long Noncoding/genetics , Oxidative Stress , Immunity, Innate/genetics
3.
Fish Shellfish Immunol ; 149: 109552, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599364

ABSTRACT

Infectious hematopoietic necrosis (IHN), caused by IHN virus, is a highly contagious and lethal disease that seriously hampers the development of rainbow trout (Oncorhynchus mykiss) aquaculture. However, the immune response mechanism of rainbow trout underlying IHNV infection remains largely unknown. MicroRNAs act as post-transcriptional regulators of gene expression and perform a crucial role in fish immune response. Herein, the regulatory mechanism and function of miR-206 in rainbow trout resistance to IHNV were investigated by overexpression and silencing. The expression analysis showed that miR-206 and its potential target receptor-interacting serine/threonine-protein kinase 2 (RIP2) exhibited significant time-dependent changes in headkidney, spleen and rainbow trout primary liver cells infected with IHNV and their expression displayed a negative correlation. In vitro, the interaction between miR-206 and RIP2 was verified by luciferase reporter assay, and miR-206 silencing in rainbow trout primary liver cells markedly increased RIP2 and interferon (IFN) expression but significantly decreased IHNV copies, and opposite results were obtained after miR-206 overexpression or RIP2 knockdown. In vivo, overexpressed miR-206 with agomiR resulted in a decrease in the expression of RIP2 and IFN in liver, headkidney and spleen. This study revealed the key role of miR-206 in anti-IHNV, which provided potential for anti-viral drug screening in rainbow trout.


Subject(s)
Fish Diseases , Fish Proteins , Infectious hematopoietic necrosis virus , MicroRNAs , Oncorhynchus mykiss , Rhabdoviridae Infections , Animals , Oncorhynchus mykiss/immunology , Oncorhynchus mykiss/genetics , Fish Diseases/immunology , Fish Diseases/virology , Infectious hematopoietic necrosis virus/physiology , Rhabdoviridae Infections/veterinary , Rhabdoviridae Infections/immunology , MicroRNAs/genetics , MicroRNAs/immunology , MicroRNAs/metabolism , Fish Proteins/genetics , Fish Proteins/immunology , Immunity, Innate/genetics
4.
Int J Biol Macromol ; 254(Pt 1): 127638, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37879576

ABSTRACT

MicroRNAs (miRNAs) play crucial roles in skin pigmentation in animals. Rainbow trout (Oncorhynchus mykiss) is a key economic fish species worldwide, and skin color directly affects its economic value. However, the functions of miRNAs in rainbow trout skin pigmentation remain largely unknown. Herein, we overexpressed and silenced miR-495 in vitro and in vivo to investigate its functions. The analysis of spatial and temporal expression patterns suggested that miR-495 is a potential regulator during the process of skin pigmentation. In vitro, mc1r was validated as a direct target for miR-495 by dual-luciferase reporter assay, and overexpression of miR-495 significantly inhibited mc1r expression; in contrast, mc1r and its downstream gene mitf levels were markedly upregulated by decreased miR-495. In vivo, overexpressed miR-495 by injecting agomiR-495 led to a substantial decrease in the expression of mc1r and mitf in dorsal skin and liver, while the opposite results were obtained after miR-495 silencing by antagomiR-495. These findings suggested that miR-495 can target mc1r to regulate rainbow trout skin pigmentation, which provide a potential basis for using miRNAs as target drugs to treat pigmentation disorders and melanoma.


Subject(s)
MicroRNAs , Oncorhynchus mykiss , Animals , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/metabolism , Skin Pigmentation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Liver/metabolism , Antagomirs
5.
Fish Shellfish Immunol ; 142: 109140, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37797868

ABSTRACT

Rainbow trout (Oncorhynchus mykiss) is an important cold-water fish widely cultivated in China. The frequent occurrence of viral diseases caused by infectious hematopoietic necrosis virus (IHNV) seriously restricted the healthy development of the rainbow trout farming industry. However, the immune defense mechanism induced by IHNV in rainbow trout has not been fully elucidated. In the present study, we detected mRNA and miRNA expression profiles in rainbow trout head kidney after IHNV infection using RNA-seq and identified key immune-related genes and miRNAs. The results showed that a total of 7486 genes and 277 miRNAs were differentially expressed, and numerous differentially expressed genes (DEGs) enriched in the immune-related pathways such as Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, cytokine-cytokine receptor interaction, and JAK-STAT signaling pathway were significantly up-regulated, including LGP2, MDA5, TRIM25, IRF3, IRF7, TLR3, TLR7, TLR8, MYD88, and IFN1. Integration analysis identified six miRNAs (miR-141-y, miR-200-y, miR-144-y, miR-2188-y, miR-725-y, and miR-203-y) that target at least six key immune-related genes (TRIM25, LGP2, TLR3, TLR7, IRF3, and IRF7). Further, we verified selected immune-related mRNAs and miRNAs through qRT-PCR and confirmed the reliability of the RNA-seq results. These findings improve our understanding of the immune mechanism of rainbow trout infected with IHNV and provide basic data for future breeding for disease resistance in rainbow trout.


Subject(s)
Fish Diseases , Infectious hematopoietic necrosis virus , MicroRNAs , Oncorhynchus mykiss , Rhabdoviridae Infections , Animals , Infectious hematopoietic necrosis virus/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , MicroRNAs/genetics , Toll-Like Receptor 7 , Toll-Like Receptor 3 , Head Kidney/metabolism , Reproducibility of Results , Immunity, Innate/genetics
6.
BMC Genomics ; 24(1): 124, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36927381

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) play a critical role in regulating skin pigmentation. As a key economic trait, skin color directly affects the market value of rainbow trout (Oncorhynchus mykiss), however, the regulatory mechanism of most miRNAs in fish skin color is still unclear. RESULTS: In this study, the full-length cDNA sequence of ß-carotene oxygenase 2 (BCO2, a key regulator of carotenoid metabolism) from the rainbow trout was obtained using rapid-amplification of cDNA ends (RACE) technology, and qRT-PCR was used to investigate the differential expression of miR-330 and BCO2 in 14 developmental stages and 13 tissues between wild-type rainbow trout (WTrt) and yellow mutant rainbow trout (YMrt). Additionally, the function of miR-330 was verified by overexpression and silencing in vitro and in vivo. The results showed that the complete cDNA sequence of BCO2 was 2057 bp with a 1707 bp ORF, encoding a 568 amino acid protein having a molecular weight of 64.07 kD. Sequence alignment revealed that higher conservation of BCO2 protein amongst fishes than amongst other vertebrates, which was further confirmed by phylogenetic analysis. The analysis of spatial and temporal expression patterns suggested that BCO2 and miR-330 were abundantly expressed from fertilized-stage to multi-cell as well as in the dorsal and ventral skin of WTrt and YMrt, and their expression patterns were opposite in most of the same periods and tissues. In vitro, luciferase reporter assay confirmed that BCO2 was a direct target of miR-330, and transfection of miR-330 mimics into rainbow trout liver cells resulted in a decrease in the expression of BCO2; conversely, miR-330 inhibitor had the opposite effect to the miR-330 mimics. In vivo, miR-330 agomir significantly decreased BCO2 expression in dorsal skin, tail fin, and liver. Furthermore, overexpression of miR-330 could suppress cell proliferation and induce apoptosis. CONCLUSION: Our results showed that miR-330 is involved in the regulation of skin pigmentation in rainbow trout by targeting BCO2 and shows its promise as a potential molecular target to assist the selection of rainbow trout with better skin color patterns.


Subject(s)
MicroRNAs , Oncorhynchus mykiss , Animals , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/metabolism , DNA, Complementary , Skin Pigmentation/genetics , Phylogeny , MicroRNAs/genetics , MicroRNAs/metabolism , Carotenoids
7.
Fish Shellfish Immunol ; 133: 108546, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36646338

ABSTRACT

Rainbow trout (Oncorhynchus mykiss) is a species of cold-water fish with important economic values, widely cultivated worldwide. However, the outbreak of infectious hematopoietic necrosis virus (IHNV) caused the large-scale death of rainbow trout and seriously restricted the development of the trout farming industry. In this study, the changes of immune parameters in different periods (6-, 12-, 24-, 48-, 72-, 96-, 120-, and 144 h post-infection (hpi)), transcriptome profiles of 48 hpi (T48G) compared to control (C48G), and key immune-related genes expression patterns were measured in rainbow trout gill following IHNV challenge through biochemical methods, RNA sequencing (RNA-seq), and quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that alkaline phosphatase (AKP), acid phosphatase (ACP), total superoxide dismutase (T-SOD), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities, as well as lysozyme (LZM) and malonaldehyde (MDA) content decreased and then increased during infection, and remained at a high level after 48 hpi (P < 0.05), whereas catalase (CAT) activity showed a significant peak at 48 hpi (P < 0.05). The mRNA and miRNA analysis identified 4343 differentially expressed genes (DEGs) and 11 differentially expressed miRNAs (DEMs), and numerous immune-related DEGs involved in the Toll-like receptor signaling pathway, apoptosis, DNA replication, p53 signaling, RIG-I-like receptor signaling pathway, and NOD-like receptor signaling pathway and expression were significantly up-regulated in T48Gm group, including tlr3, tlr7, tlr8, traf3, ifih1, trim25, dhx58, ddh58, hsp90a.1, nlrc3, nlrc5, socs3, irf3, irf7, casp7, mx1, and vig2. The integrated analysis identified several important miRNAs (ola-miR-27d-3p_R+5, gmo-miR-124-3-5p, ssa-miR-301a-5p_L+2, and ssa-miR-146d-3p) that targeted key immune-related DEGs. Expression analysis showed that tlr3, tlr7, traf3, ifih1, dhx58, hap90a.1, irf3, irf7, and mx1 genes increased and then decreased during infection, and peaked at 72 hpi (P < 0.05). However, trim25 expression peaked at 96 hpi (P < 0.05). This study contributes to understanding immune response of rainbow trout against IHNV infection, and provides new insights into the immune regulation mechanisms and disease resistance breeding studies.


Subject(s)
Fish Diseases , Infectious hematopoietic necrosis virus , MicroRNAs , Oncorhynchus mykiss , Rhabdoviridae Infections , Animals , Infectious hematopoietic necrosis virus/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Toll-Like Receptor 7/genetics , Toll-Like Receptor 3/genetics , Gills/metabolism , TNF Receptor-Associated Factor 3/genetics , MicroRNAs/genetics , Transcriptome
8.
Fish Shellfish Immunol ; 131: 54-66, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36174908

ABSTRACT

Rainbow trout (Oncorhynchus mykiss), an economically important cold-water fish cultured worldwide, suffers from infectious hematopoietic necrosis virus (IHNV) infection, resulting in huge financial losses. In order to understand the immune response of rainbow trout during virus infection, we explored trout intestine transcriptome profiles following IHNV challenge, and identified 3355 differentially expressed genes (DEGs) and 80 differentially expressed miRNAs (DEMs). Transcriptome analysis revealed numerous DEGs involved in immune responses, such as toll-like receptor 3 (TLR3), toll-like receptor 7/8 (TLR7/8), tripartite motif-containing 25 (TRIM25), DExH-Box helicase 58 (DHX58), interferon-induced with helicase C domain 1 (IFIH1), interferon regulatory factor 3 (IRF3/7), signal transducer and activator of transcription 1 (STAT1) and heat shock protein 90-alpha 1 (HSP90A1). Integrated analysis identified five key miRNAs (miR-19-y, miR-181-z, miR-203-y, miR-143-z and miR-206-y) targeting at least two important immune genes (TRIM25, DHX58, STAT1, TLR7/8 and HSP90A1). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that DEGs and target genes were significantly enriched in various immune-related terms including immune system process, binding, cell part and pathways of Toll-like receptor signalling, RIG-I-like receptor signalling, NOD-like receptor signalling, JAK-STAT signalling, PI3K-Akt signalling, NF-kappa B signalling, IL-17 signalling and AGE-RAGE signalling. In addition, protein-protein interaction networks (PPI) was used to display highly interactive DEG networks involving eight immune-related pathways. The expression trends of 12 DEGs and 10 DEMs were further verified by quantitative real-time PCR, which confirmed the reliability of the transcriptome sequencing results. This study expands our understanding of the immune response of rainbow trout infected with IHNV, and provides valuable resources for future studies on the immune molecular mechanism and disease resistance breeding.


Subject(s)
Fish Diseases , Infectious hematopoietic necrosis virus , MicroRNAs , Oncorhynchus mykiss , Rhabdoviridae Infections , Animals , Infectious hematopoietic necrosis virus/genetics , Toll-Like Receptor 7 , Phosphatidylinositol 3-Kinases , Reproducibility of Results , RNA, Messenger/metabolism , MicroRNAs/genetics , Immunity , Intestines
9.
Front Immunol ; 13: 970321, 2022.
Article in English | MEDLINE | ID: mdl-36119061

ABSTRACT

Rainbow trout (Oncorhynchus mykiss) is an important economical cold-water fish worldwide. However, infection with infectious hematopoietic necrosis virus (IHNV) has severely restricted the development of aquaculture and caused huge economic losses. Currently, little is known about the immune defense mechanisms of rainbow trout against IHNV. In this study, we detected the changes of immune parameters over different post-infection periods (6-, 12-, 24-, 48-, 72-, 96-, 120-, and 144 hours post-infection (hpi)), mRNA and miRNA expression profiles under 48 hpi (T48L) compared to control (C48L), and key immune-related genes expression patterns in rainbow trout liver following IHNV challenge through biochemical methods, RNA-seq, and qRT-PCR, and the function of miR-330-y was verified by overexpression and silencing in vitro and in vivo. The results revealed that alkaline phosphatase (AKP), alanine aminotransferase (ALT), catalase (CAT), and total superoxide dismutase (T-SOD) activities, and lysozyme (LZM) content showed significant peaks at 48 hpi, whereas malondialdehyde (MDA) content and aspartate aminotransferase (AST) activity decreased continuously during infection, and acid phosphatase (ACP) activity varied slightly. From RNA-seq, a total of 6844 genes and 86 miRNAs were differentially expressed, and numerous immune-related differentially expressed genes (DEGs) involved in RIG-I-like receptor signaling pathway, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, cytokine-cytokine receptor interaction, and antigen processing and presentation were significantly upregulated in T48Lm group, including IFIH1, DHX58, MAVS, TRAF3, IRF3, IRF7, MX1, TLR3, TLR8, MYD88, NOD1, NOD2, IL-8, CXCR1, CD209, CD83, and TAP1. Integrated analysis identified seven miRNAs (miR-425-x, miR-185-x, miR-338-x, miR-330-y, miR-361-x, miR-505-y, and miR-191-x) that target at least three key immune-related DEGs. Expression analysis showed that IFIH1, DHX58, IRF3, IRF7, MX1, TLR3, TLR8, and MYD88 showed a marked increase after 24 hpi during infection. Further research confirmed TAP1 as one of the targets of miR-330-y, overexpression of miR-330-y with mimics or agomir significantly reduced the expression levels of TAP1, IRF3, and IFN, and the opposite effects were obtained by inhibitor. These results facilitate in-depth understanding of the immune mechanisms in rainbow trout against IHNV.


Subject(s)
Fish Diseases , Infectious hematopoietic necrosis virus , MicroRNAs , Oncorhynchus mykiss , Acid Phosphatase , Alanine Transaminase , Alkaline Phosphatase , Animals , Aspartate Aminotransferases , Catalase , Interferon-Induced Helicase, IFIH1 , Interleukin-8 , Liver , Malondialdehyde , MicroRNAs/genetics , Muramidase , Myeloid Differentiation Factor 88 , NLR Proteins , RNA, Messenger , Receptors, Cytokine , Superoxide Dismutase , TNF Receptor-Associated Factor 3 , Toll-Like Receptor 3 , Toll-Like Receptor 8 , Water
10.
Mar Biotechnol (NY) ; 24(4): 776-787, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35895228

ABSTRACT

MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs that are involved in a diverse collection of biological processes as important post-transcriptional regulators. However, little is known about the molecular regulatory mechanism of miRNAs in fish skin pigmentation. In this study, we first confirmed that dopachrome tautomerase (dct), a key gene of melanogenesis, is a target of miR-382 in rainbow trout (Oncorhynchus mykiss) using luciferase reporter assay. The analysis of different developmental stages and tissue expression patterns between wild-type and yellow mutant rainbow trout suggested that miR-382 is a potential regulator during the process of skin pigmentation. In vitro, miR-382 mimics in rainbow trout primary liver cells significantly downregulated dct expression and resulted in decreased expression of key melanogenic genes including tyrosine-related protein 1 (tyrp1) and premelanosome protein (pmel), whereas the expression level of dct was markedly increased after transfected with miR-382 inhibitor. In vivo, overexpression of miR-382 by injection of miR-382 agomir significantly depressed the expression of dct in dorsal skin, tail fin, and liver and then reduced the expression levels of tyrp1 and pmel. Furthermore, transfection of miR-382 mimics inhibited cell proliferation and induced apoptosis. Taken together, our results identified a functional role of miR-382 in rainbow trout skin pigmentation through targeting dct, which facilitate understanding the regulatory mechanism of rainbow trout skin color at the post-transcriptional level and provide a theoretical basis for molecular breeding with skin color as the target trait.


Subject(s)
MicroRNAs , Oncorhynchus mykiss , Animals , Intramolecular Oxidoreductases , Melanins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/metabolism
11.
Front Immunol ; 13: 802731, 2022.
Article in English | MEDLINE | ID: mdl-35655786

ABSTRACT

Fish skin is a vital immune organ that forms the first protective barrier preventing entry of external pathogens. Rainbow trout is an important aquaculture fish species that is farmed worldwide. However, our knowledge of innate immunity differences between wild-type (WR_S) and yellow mutant rainbow trout (YR_S) remains limited. In this study, we performed whole transcriptome analysis of skin from WR_S and YR_S cultured in a natural flowing water pond. A total of 2448 mRNAs, 1630 lncRNAs, 22 circRNAs and 50 miRNAs were found to be differentially expressed (DE). Among these DEmRNAs, numerous key immune-related genes, including ifih1, dhx58, trim25, atp6v1e1, tap1, tap2, cd209, hsp90a.1, nlrp3, nlrc3, and several other genes associated with metabolism (gstp1, nampt, naprt and cd38) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEmRNAs revealed that many were significantly enriched in innate immune-related GO terms and pathways, including NAD+ADP-ribosyltransferase activity, complement binding, immune response and response to bacterium GO terms, and RIG-I-like receptor signaling, NOD-like receptor signaling and phagosome KEGG pathways. Furthermore, the immune-related competing endogenous RNA networks were constructed, from which we found that lncRNAs MSTRG.11484.2, MSTRG.32014.1 and MSTRG.29012.1 regulated at least three immune-related genes (ifih1, dhx58 and irf3) through PC-5p-43254_34, PC-3p-28352_70 and bta-miR-11987_L-1R-1_1ss8TA, and tap2 was regulated by two circRNAs (circRNA5279 and circRNA5277) by oni-mir-124a-2-p5_1ss13GA. The findings expand our understanding of the innate immune system of rainbow trout, and lay the foundation for further study of immune mechanisms and disease resistance breeding.


Subject(s)
MicroRNAs , Oncorhynchus mykiss , RNA, Long Noncoding , Animals , Immunity, Innate/genetics , Interferon-Induced Helicase, IFIH1 , RNA, Circular/genetics , RNA, Long Noncoding/genetics
12.
Light Sci Appl ; 11(1): 48, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35232973

ABSTRACT

The nano-opto-electro-mechanical systems (NOEMS) are a class of hybrid solid devices that hold promises in both classical and quantum manipulations of the interplay between one or more degrees of freedom in optical, electrical and mechanical modes. To date, studies of NOEMS using van der Waals (vdW) heterostructures are very limited, although vdW materials are known for emerging phenomena such as spin, valley, and topological physics. Here, we devise a universal method to easily and robustly fabricate vdW heterostructures into an architecture that hosts opto-electro-mechanical couplings in one single device. We demonstrated several functionalities, including nano-mechanical resonator, vacuum channel diodes, and ultrafast thermo-radiator, using monolithically sculpted graphene NOEMS as a platform. Optical readout of electric and magnetic field tuning of mechanical resonance in a CrOCl/graphene vdW NOEMS is further demonstrated. Our results suggest that the introduction of the vdW heterostructure into the NOEMS family will be of particular potential for the development of novel lab-on-a-chip systems.

13.
Sci Rep ; 12(1): 256, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997156

ABSTRACT

Yellow mutant rainbow trout (YR), an economically important aquaculture species, is popular among consumers due to its excellent meat quality and attractive appearance. Skin color is a key economic trait for YR, but little is known about the molecular mechanism of skin color development. In this study, YR skin transcriptomes were analyzed to explore temporal expression patterns of pigmentation-related genes in three different stages of skin color development. In total, 16,590, 16,682, and 5619 genes were differentially expressed between fish at 1 day post-hatching (YR1d) and YR45d, YR1d and YR90d, and YR45d and YR90d. Numerous differentially expressed genes (DEGs) associated with pigmentation were identified, and almost all of them involved in pteridine and carotenoid synthesis were significantly upregulated in YR45d and YR90d compared to YR1d, including GCH1, PTS, QDPR, CSFIR1, SLC2A11, SCARB1, DGAT2, PNPLA2, APOD, and BCO2. Interestingly, many DEGs enriched in melanin synthesis pathways were also significantly upregulated, including melanogenesis (MITF, MC1R, SLC45A2, OCA2, and GPR143), tyrosine metabolism (TYR, TYRP1, and DCT), and MAPK signaling (KITA) pathways. Using short time-series expression miner, we identified eight differential gene expression pattern profiles, and DEGs in profile 7 were associated with skin pigmentation. Protein-protein interaction network analysis showed that two modules were related to xanthophores and melanophores. In addition, 1,812,329 simple sequence repeats and 2,011,334 single-nucleotide polymorphisms were discovered. The results enhance our understanding of the molecular mechanism underlying skin pigmentation in YR, and could accelerate the molecular breeding of fish species with valuable skin color traits and will likely be highly informative for developing new therapeutic approaches to treat pigmentation disorders and melanoma.


Subject(s)
Fish Proteins/genetics , Gene Expression Profiling , Mutation , Oncorhynchus mykiss/genetics , Skin Pigmentation/genetics , Transcriptome , Animals , Fish Proteins/metabolism , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Genotype , Oncorhynchus mykiss/growth & development , Oncorhynchus mykiss/metabolism , Phenotype , Polymorphism, Single Nucleotide , Protein Interaction Maps , RNA-Seq , Signal Transduction
14.
Nat Commun ; 12(1): 7196, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34893613

ABSTRACT

Interfacial moiré superlattices in van der Waals vertical assemblies effectively reconstruct the crystal symmetry, leading to opportunities for investigating exotic quantum states. Notably, a two-dimensional nanosheet has top and bottom open surfaces, allowing the specific case of doubly aligned super-moiré lattice to serve as a toy model for studying the tunable lattice symmetry and the complexity of related electronic structures. Here, we show that by doubly aligning a graphene monolayer to both top and bottom encapsulating hexagonal boron nitride (h-BN), multiple conductivity minima are observed away from the main Dirac point, which are sensitively tunable with respect to the small twist angles. Moreover, our experimental evidences together with theoretical calculations suggest correlated insulating states at integer fillings of -5, -6, -7 electrons per moiré unit cell, possibly due to inter-valley coherence. Our results provide a way to construct intriguing correlations in 2D electronic systems in the weak interaction regime.

15.
Article in English | MEDLINE | ID: mdl-34653947

ABSTRACT

Rainbow trout (Oncorhynchus mykiss) is an important economic fish in China. Skin color affects the economic value of trout. However, the molecular mechanism of the skin color variation between wild-type (WR) and yellow mutant rainbow trout (YR) is unclear. We sequenced mRNAs and miRNAs of dorsal skin to identify key color variation-associated mRNAs and miRNAs between WR and YR. Overall, 2060 out of 3625 differentially expressed genes were upregulated in YR, and 196 out of 275 differentially expressed miRNAs were downregulated in WR. We identified three key YR-upregulated genes related to the formation of xanthophores (GCH1, SLC2A11, and SOX10). Interestingly, several genes related to melanogenesis (TYR, TYRP1, TYRP2, MC1R, MITF, PMEL, SLC45A2, and OCA2) were downregulated in WR. Integrated analysis identified five miRNAs that target at least two skin color-related genes (miR-495-y, miR-543-y, miR-665-z, miR-433-y, and miR-382-x). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of target genes identified noncoding RNA metabolic process as the most significantly enriched GO term, and several metabolic pathways associated with skin color were enriched significantly, such as tyrosine metabolism, histidine metabolism, and vitamin B6 metabolism. Quantitative real-time PCR of selected mRNAs and miRNAs validated the reliability of the integrated analysis. This study provides in-depth insights into the molecular mechanism of skin color variation between WR and YR, which will accelerate the genetic selection and breeding of rainbow trout with consumer-favored traits.


Subject(s)
MicroRNAs , Oncorhynchus mykiss , Animals , MicroRNAs/genetics , Oncorhynchus mykiss/genetics , RNA, Messenger , Reproducibility of Results , Skin Pigmentation/genetics , Transcriptome
16.
J Fish Biol ; 99(6): 1798-1803, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34405404

ABSTRACT

MicroRNAs (miRNAs) are being extensively studied as they function as key metabolic regulators which play a role in the heat stress response. However, the role of miRNAs in heat stress remains uncertain and many new miRNAs have not yet been discovered. In a previous study, we performed high-throughput sequencing of differentially expressed miRNAs identified on exposing rainbow trout (Oncorhynchus mykiss) to heat stress (18 vs. 24°C), which led to the identification of two novel miRNAs, temporarily named novel miR-434 and -242. The differential expression level of these miRNAs was extremely significant (P < 0.01); we analysed target gene mRNA transcripts by bioinformatics software (miRanda). We found novel miR-434 and -242 were predicted to regulate the transcripts of heat shock 70-kDa protein 4-like (HSPA4L) and calreticulin (CRT), respectively, by bioinformatics software. Here our core objective was to validate if HSPA4L and CRT are indeed the target genes of novel miR-434 and -242, respectively, and for this purpose we used the dual-luciferase reporter assay system. Target gene sequences were synthesized and cloned into a dual-luciferase vector. To better understand the function of the target genes, we combined the previous sequencing results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. We found that novel miR-434 regulated HSPA4L expression by binding to a putative binding site in the 3'-UTR of HSPA4L, and luciferase activity inhibition was observed. In contrast, novel miR-242 was not involved in regulating CRT expression. To conclude, we believe our results should serve as a foundation for future studies aiming to comprehensively understand the mechanisms used by rainbow trout to cope with heat stress.


Subject(s)
Heat-Shock Response , MicroRNAs , Oncorhynchus mykiss , Animals , Gene Expression Profiling , Heat-Shock Response/genetics , High-Throughput Nucleotide Sequencing , MicroRNAs/genetics , Oncorhynchus mykiss/genetics , RNA, Messenger
17.
Adv Sci (Weinh) ; 7(24): 2002172, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33344127

ABSTRACT

Accurate design of the 2D metal-semiconductor (M-S) heterostructure via the covalent combination of appropriate metallic and semiconducting materials is urgently needed for fabricating high-performance nanodevices and enhancing catalytic performance. Hence, the lateral epitaxial growth of M-S Sn x Mo1- x S2/MoS2 heterostructure is precisely prepared with in situ growth of metallic Sn x Mo1- x S2 by doping Sn atoms at semiconductor MoS2 edge via one-step chemical vapor deposition. The atomically sharp interface of this heterostructure exhibits clearly distinguished performance based on a series of characterizations. The oxygen evolution photoelectrocatalytic performance of the epitaxial M-S heterostructure is 2.5 times higher than that of pure MoS2 in microreactor, attributed to the efficient electron-hole separation and rapid charge transfer. This growth method provides a general strategy for fabricating seamless M-S lateral heterostructures by controllable doping heteroatoms. The M-S heterostructures show increased carrier migration rate and eliminated Fermi level pinning effect, contributing to their potential in devices and catalytic system.

18.
Qual Life Res ; 29(3): 629-638, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31782019

ABSTRACT

PURPOSE: Adenoid hypertrophy (AH) is common among young children. Adenoid-based surgery and drug therapy could be applied for symptomatic AH patients, yet the treatment decision is difficult to make due to the diverse cost and efficacy between these two treatments. METHODS: A Markov simulation model was designed to estimate the cost-effectiveness (CE) of the adenoid-based surgery and the drug therapy for symptomatic AH patients. Transition probabilities, costs and utilities were extracted from early researches and expert opinions. Simulations using two set of parameter inputs for China and the USA were performed. Primary outcome was cost per QALY gained over a 6-year period. Deterministic and probabilistic sensitivity analyses were also conducted. RESULTS: The utility for the surgery group and the drug group were 4.10 quality-adjusted life years (QALYs) and 3.58 QALYs, respectively. The cost of the surgery group was more than that of the drug group using model parameters specific to China ($1069.0 vs. $753.7) but was less for the USA ($1994.4 vs. $3977.7). Surgery was dominant over drug therapy when US specific parameters were used. Surgery group had an ICER of $604.0 per QALY when parameters specific to China was used. CONCLUSION: Surgery is cost-effective in the simulations for both China and the USA at WTP thresholds of $9633.1 and $62,517.5, respectively.


Subject(s)
Adenoids/physiopathology , Hypertrophy/drug therapy , Hypertrophy/surgery , Cost-Benefit Analysis , Humans , Markov Chains
19.
Funct Integr Genomics ; 19(5): 775-786, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31076931

ABSTRACT

Recently, the research of animal microRNAs (miRNAs) has attracted wide attention for its regulatory effect in the development process and the response to abiotic stresses. Rainbow trout is a commercially and cold water fish species, and usually encounters heat stress, which affects its growth and leads to a huge economic loss. But there were few investigations about the roles of miRNAs in heat stress in rainbow trout. In this study, miRNAs of rainbow trout which were involved in heat stress were identified by high-throughput sequencing of six small RNA libraries from head kidney tissues under control (18 °C) and heat-treated (24 °C) conditions. A total of 392 conserved miRNAs and 989 novel miRNAs were identified, of which 78 miRNAs were expressed in different response to heat stress. Ten of these miRNAs were further validated by quantitative real-time PCR. In addition to, including 393 negative correlation miRNA-target gene pairs, several important regulatory pathways were involved in heat stress of the potential target genes, including protein processing in endoplasmic reticulum, NOD-like receptor signaling pathway, and phagosome. Our data significantly advance understanding of heat stress regulatory mechanism of miRNA in the head kidney of rainbow trout, which provide a useful resource for the cultivation of rainbow trout.


Subject(s)
Gene Expression Regulation , Head Kidney/metabolism , Heat-Shock Response , High-Throughput Nucleotide Sequencing/methods , MicroRNAs/genetics , Oncorhynchus mykiss/genetics , Transcriptome , Animals , Signal Transduction , Stress, Physiological
20.
ORL J Otorhinolaryngol Relat Spec ; 81(2-3): 82-91, 2019.
Article in English | MEDLINE | ID: mdl-31112985

ABSTRACT

BACKGROUND: Induction chemotherapy (ICT) has become an initial treatment for late-stage hypopharyngeal squamous cell carcinoma (SCC); however, there are no data regarding ICT sensitivity for this population. OBJECTIVE: This study investigated the predictive value of various inflammation markers for ICT responses in hypopharyngeal SCC. METHODS: The data from 72 patients who received initial ICT treatment were obtained and associations between pretreatment inflammation markers and overall responses to ICT were calculated. RESULTS: According to receiver operating characteristic curves, pretreatment lymphocyte count (PLC), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) achieved diagnostic accuracy for overall responses to ICT. These indicators were classified into two groups according to their cut-off values. Overall response rates were significantly higher in the low PLC (p < 0.01), high NLR (p = 0.035), and high PLR (p = 0.012) groups. CONCLUSION: Our results showed that low PLC, high NLR, and high PLR are predictors of positive responses to ICT in hypopharyngeal SCC patients.


Subject(s)
Antineoplastic Agents/therapeutic use , Blood Platelets/pathology , Hypopharyngeal Neoplasms/therapy , Inflammation/pathology , Lymphocytes/pathology , Neutrophils/pathology , Adult , Aged , Combined Modality Therapy , Female , Follow-Up Studies , Humans , Hypopharyngeal Neoplasms/pathology , Induction Chemotherapy , Leukocyte Count , Male , Middle Aged , Prognosis , ROC Curve , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...