Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Omega ; 7(21): 18085-18093, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35664603

ABSTRACT

Gold nanoparticles (Au NPs) are installed in situ on the surfaces of graphitic carbon nitride (g-C3N4) based on supramolecular hydroxylatopillar[6]arene (P6). The Au NPs can be obtained via the redox reaction between HAuCl4 and P6 without any NH2-NH2, NaBH4, and other reductants, where AuCl4 - is reduced to Au0 by the -OH groups in the presence of OH-, and the -OH groups are oxidized into -COOH. First, P6 is loaded onto the surface of g-C3N4 via π-π interaction between P6 and g-C3N4, which offers a stabilized and reduced site for in situ anchoring of Au NPs. The hybrid nanomaterial Au-NPs@P6@g-C3N4 exhibits higher catalytic capability than the Pd/C catalyst in 4-nitrophenol (4-NP) reduction and methylene blue degradation, which opens a new avenue for designing more efficient hybrid nanomaterials for application in catalysis, sensing, and other fields.

2.
Article in English | MEDLINE | ID: mdl-34046650

ABSTRACT

Genome-wide association studies (GWASs) have reported numerous associations between risk variants and major psychiatric disorders (MPDs) including schizophrenia (SCZ), bipolar disorder (BPD), major depressive disorder (MDD) and others. We reviewed all of the published GWASs, and extracted the genome-wide significant (p<10-6) and replicated associations between risk SNPs and MPDs. We found the associations of 6 variants located in 6 genes, including L type voltage-gated calcium channel (LTCCs) subunit alpha1 C gene (CACNA1C), that were genome-wide significant (2.0×10 -8 ≤p≤1.0×10 -6 ) and replicated at single-point level across at least two GWASs. Among them, the associations between MPDs and rs1006737 within CACNA1C are most robust. Thus, as a next step, the expression of the replicated risk genes in human hippocampus was analyzed. We found CACNA1C had significant mRNA expression in human hippocampus in two independent cohorts. Finally, we tried to elucidate the roles of venlafaxine and ω-3 PUFAs in the mRNA expression regulation of the replicated risk genes in hippocampus. We used cDNA chip-based microarray profiling to explore the transcriptome-wide mRNA expression regulation by ω-3 PUFAs (0.72/kg/d) and venlafaxine (0.25/kg/d) treatment in chronic mild stress (CMS) rats. ω-3 PUFAs and venlafaxine treatment elicited significant CACNA1C up-regulation. We concluded that CACNA1C might confer the genetic vulnerability to the shared depressive symptoms across MPDs and CACNA1C might be the therapeutic target for depressive endophenotype as well.

SELECTION OF CITATIONS
SEARCH DETAIL