Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38640061

ABSTRACT

OBJECTIVES: Reference materials for in-vitro diagnostic reagents play a critical role in determining the quality of reagents and ensuring the accuracy of clinical test results. This study aimed to establish a national reference material (NRM) for detecting cytochrome P450 (CYP) genes related to drug metabolism by screening databases on the Chinese population to identify CYP gene polymorphism characteristics. METHODS: To prepare the NRM, we used DNA extracted from healthy human immortalized B lymphoblastoid cell lines as the raw material. Samples of these cell lines were obtained from the Chinese Population PGx Gene Polymorphism Biobank. Further, we used Sanger sequencing, next-generation sequencing, and commercial assay kits to validate the polymorphic genotypes. RESULTS: Among the CYP superfamily genes, we confirmed 24 riboswitch loci related to drug metabolism, with evidence levels of 1A, 2A, 3, and 4. We confirmed the polymorphic loci and validated their genotypes using various sequencing techniques. Our results were consistent with the polymorphism information of samples obtained from the biobank, thus demonstrating high precision and stability of the established NRM. CONCLUSION: An NRM (360 056-202 201) for CYP genetic testing covering 24 loci related to drug metabolism was established and approved to assess in-vitro diagnostic reagents containing CYP family gene polymorphisms and perform clinical inter-room quality evaluations.

2.
Cell Death Dis ; 14(3): 184, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36882393

ABSTRACT

Deficiency of the histone H3K9 methyltransferase SETDB1 induces RIPK3-dependent necroptosis in mouse embryonic stem cells (mESCs). However, how necroptosis pathway is activated in this process remains elusive. Here we report that the reactivation of transposable elements (TEs) upon SETDB1 knockout is responsible for the RIPK3 regulation through both cis and trans mechanisms. IAPLTR2_Mm and MMERVK10c-int, both of which are suppressed by SETDB1-dependent H3K9me3, act as enhancer-like cis-regulatory elements and their RIPK3 nearby members enhance RIPK3 expression when SETDB1 is knockout. Moreover, reactivated endogenous retroviruses generate excessive viral mimicry, which promotes necroptosis mainly through Z-DNA-binding protein 1 (ZBP1). These results indicate TEs play an important role in regulating necroptosis.


Subject(s)
DNA Transposable Elements , Mouse Embryonic Stem Cells , Animals , Mice , DNA Transposable Elements/genetics , Necroptosis/genetics , Histone Methyltransferases , RNA-Binding Proteins
3.
Methods Protoc ; 5(2)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35448693

ABSTRACT

The reprogramming of somatic cells to obtain induced pluripotent stem cells (iPSCs) is an important biological and medical breakthrough, providing important applications for fields such as regenerative medicine and disease modeling. However, this promising technology is damped due to its low efficiency and slow kinetics. Therefore, we generated a practical workflow to rapidly and efficiently induce iPSCs from mouse embryonic fibroblasts (MEFs) using iCD1 (iPS chemically-defined medium 1). This protocol can easily be implemented in a standard cell culture laboratory and be applied to cell fate research.

SELECTION OF CITATIONS
SEARCH DETAIL
...