Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Vaccine ; 41(5): 1132-1141, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36621409

ABSTRACT

Current vaccine formulations elicit a recall immune response against viruses by targeting epitopes on the globular head of hemagglutinin (HA), and stalk-reactive antibodies are rarely found. However, stalk-specific memory B-cell expansion after influenza vaccination is poorly understood. In this study, B cells were isolated from individuals immunized with seasonal tetravalent influenza vaccines at days 0 and 28 for H7N9 stimulation in vitro. Plasma and supernatants were collected for the analysis of anti-HA IgG using ELISA and a Luminex assay. Memory B cells were positively enriched, and total RNA was extracted for B cell receptor (BCR) H-CDR3 sequencing. All subjects displayed increased anti-H3 antibody secretion after vaccination, whereas no increase in cH5/3-reactive IgG levels was detected. The number of shared memory B-cell clones among individuals dropped dramatically from 593 to 37. Four out of 5 subjects displayed enhanced frequencies of the VH3-23 and VH3-30 genes, and one exhibited an increase in the frequency of VH1-18, which are associated with the stalk of HA. An increase in H3 stalk-specific antibodies produced by B cells stimulated with H7N9 viruses was detected after vaccination. These results demonstrated that H3 stalk-specific memory B cells can expand and secrete antibodies that bind to the stalk in vitro, although no increase in serum H3 stalk-reactive antibodies was found after vaccination, indicating potential for developing a universal vaccine strategy.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza, Human , Humans , Antibodies, Neutralizing , Antibodies, Viral , Memory B Cells , Hemagglutinin Glycoproteins, Influenza Virus , Vaccination , Clone Cells , Immunoglobulin G
4.
Hum Vaccin Immunother ; 18(6): 2128014, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36197079

ABSTRACT

The very first influenza virus exposure in a human during infancy is known to imprint the host immune system. However, it is unclear how the memory B cells that first target virus epitopes affect antibody response to the stalk of hemagglutinin (HA) domain of influenza virus. Our study is designed to measure the cross-reactivity of antibodies induced by inactivated H7N9 virus using isolated human peripheral blood B cells. Most of the participants displayed higher levels of plasma IgG against the seasonal strains A/Vic11 and A/Cali09 than those binding to historical outbreak A/HK68 and A/PR8. H3 stalk-binding antibodies were detected in plasma at a 1:5000 dilution in 12 of 13 donors, H1 stalk-binding antibodies in all donors, indicating the existence of H3 and H1 stalk-reactive memory B cells. A moderate to high level of broadly cross-reactive antibodies was induced in memory B cells from all donors after in vitro stimulation of B cells with H7N9 virus. H3 stalk-binding antibodies were also detected in most subjects, with cross-reactivity to H1 and H7 stalk domains. The stalk-reactive antibodies bound to five H3 strains spanning 45 years and different H1, H2, H3, H5, H6, H7, H9 and B strains. Interestingly, H1- and H3-reactive IgG were much higher than H7-binding antibodies after 6 days of H7N9 stimulation. Our results demonstrate that HA stalk-reactive antibodies induced by H7N9 viruses more efficiently bound to yearly circulating both H3N2 and H1N1 strains than the boosting strain, indicating that HA stalk immunological imprint can be extended across currently circulating strains or vaccines.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza, Human , Humans , Influenza A Virus, H3N2 Subtype , Hemagglutinin Glycoproteins, Influenza Virus , Antibodies, Viral , Hemagglutinins , Immunoglobulin G , Influenza, Human/prevention & control
6.
Int J Mol Sci ; 23(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35628403

ABSTRACT

Simulated microgravity (SMG) inhibits osteoblast differentiation (OBD) and induces bone loss via the inhibition of the Wnt/ß-catenin pathway. However, the mechanism by which SMG alters the Wnt/ß-catenin pathway is unknown. We previously demonstrated that SMG altered the focal adhesion kinase (FAK)-regulated mTORC1, AMPK and ERK1/2 pathways, leading to the inhibition of tumor cell proliferation/metastasis and promoting cell apoptosis. To examine whether FAK similarly mediates SMG-dependent changes to Wnt/ß-catenin in osteoblasts, we characterized mouse MC3T3-E1 cells cultured under clinostat-modeled SMG (µg) conditions. Compared to cells cultured under ground (1 g) conditions, SMG reduces focal adhesions, alters cytoskeleton structures, and down-regulates FAK, Wnt/ß-catenin and Wnt/ß-catenin-regulated molecules. Consequently, protein-2 (BMP2), type-1 collagen (COL1), alkaline-phosphatase activity and matrix mineralization are all inhibited. In the mouse hindlimb unloading (HU) model, SMG-affected tibial trabecular bone loss is significantly reduced, according to histological and micro-computed tomography analyses. Interestingly, the FAK activator, cytotoxic necrotizing factor-1 (CNF1), significantly suppresses all of the SMG-induced alterations in MC3T3-E1 cells and the HU model. Therefore, our data demonstrate the critical role of FAK in the SMG-induced inhibition of OBD and bone loss via the Wnt/ß-catenin pathway, offering FAK signaling as a new therapeutic target not only for astronauts at risk of OBD inhibition and bone loss, but also osteoporotic patients.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases , Osteoblasts , Weightlessness , Wnt Signaling Pathway , beta Catenin , 3T3 Cells , Animals , Enzyme Activation , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Mice , Osteoblasts/cytology , Osteoblasts/metabolism , X-Ray Microtomography , beta Catenin/metabolism
7.
Hum Vaccin Immunother ; 17(2): 475-484, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32692606

ABSTRACT

Several different vaccines have been produced for human use to prevent the highly pathogenic H5N1 influenza. Some studies reported that the clinical effectiveness of influenza vaccines in older adults may be lower than in younger adults. In this study, a meta-analysis of the immunogenicity of H5N1 influenza vaccines in elderly adults was performed. Database search was conducted in EMBASE, PubMed, the Cochrane Library, Chinese VIP, Wanfang and CBM. A total of 3951 elderly adults from 10 articles were included in the meta-analysis. Compared to a single dose, two doses of H5N1 vaccines resulted in the higher seroconversion and seroprotection. For all groups treated with adjuvanted vaccines, there were significant increases (1.55- to 2.16-fold) in the seroconversion rates (SCRs) and seroprotection rates (SPRs) after two immunizations. Oil-in-water emulsion (OE)-adjuvanted 7.5 µg vaccine caused higher antibody responses than 3.75 µg of vaccine (SCR: risk ratio (RR) = 1.26 (1.19, 1.33); SPR: RR = 1.25 (1.14, 1.36)). Elderly adults exhibited slightly lower antibody responses only when given 7.5 µg of OE-adjuvanted vaccine (SCR: RR = 1.06 (1.01, 1.11)) than younger adults. After treatment with the 7.5 µg of OE-adjuvanted vaccines, the most commonly reported adverse events were injection site pain, swelling and erythema, with the incidence of 32%, 3% and 2%, respectively, and no serious adverse events were found. These data demonstrate that two doses of 7.5 µg of OE-adjuvanted H5N1 vaccine are well tolerated and induce a robust antibody response in elderly adults.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza, Human , Adjuvants, Immunologic , Aged , Antibodies, Viral , Hemagglutination Inhibition Tests , Humans , Influenza Vaccines/adverse effects , Influenza, Human/prevention & control
8.
Hum Vaccin Immunother ; 16(2): 286-294, 2020.
Article in English | MEDLINE | ID: mdl-31419167

ABSTRACT

Inoculation with vaccine is the major intervention currently used to prevent influenza infections. However, it will be a challenge to produce and implement a new vaccine when a novel highly pathogenic influenza virus emerges in humans as significant infections. H7 subtype influenza viruses have similar epitopes on hemagglutinin, which can induce cross-reactive antibodies. In this study, a meta-analysis of the cross-reactivity of antibodies induced by one H7 subtype influenza vaccine against other H7 subtypes was performed. Database search was conducted in PubMed, Cochrane Library, EMBASE, MEDLINE, Chinese Biological Medicine Database (CBM), and Wanfang. A total of 9 articles comprising 811 human subjects were included in this meta-analysis. All assessed H7 influenza vaccines induced vaccine strain-specific protective antibodies [seroconversion rate (SCR) = 0.74, 95% CI (0.65, 0.82); seroprotection rate (SPR) = 0.81, 95% CI (0.78, 0.83)]. All H7 influenza virus monovalent vaccines exhibited cross-reactivity tested by hemagglutinin inhibition test (HI), microneutralization test (MN) and immunosorbent assay (ELISA) to other H7 subtype viruses. H7N1, H7N3, H7N7, and H7N9 vaccines elicited cross-reactive antibodies against other H7 subtype influenza viruses [SCR = 0.66, 95% CI (0.50, 0.82); SPR = 0.79, 95% CI (0.67, 0.91)]. The pooled SCR (95%CI) of cross-reactivity of H7N1 and H7N3 vaccines were 0.88 (0.85, 0.91) and 0.40 (0.26, 0.54), respectively. The consolidated SPR (95%CI) of H7N1 and H7N7 vaccines were 0.89 (0.86, 0.92) and 0.93 (0.81, 1.06). All H7 vaccines induced cross-reactive antibodies against H7N9 viruses [SCR = 0.69, 95% CI (0.52, 0.86); SPR = 0.85, 95% CI (0.76, 0.94)]. H7 vaccines can be used to limit influenza infection when a new highly pathogenic H7 virus appears.


Subject(s)
Influenza A Virus, H7N1 Subtype , Influenza A Virus, H7N7 Subtype , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza, Human , Antibodies, Neutralizing , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Humans , Influenza A Virus, H7N3 Subtype , Influenza, Human/prevention & control
9.
Biol Open ; 8(1)2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30647024

ABSTRACT

Interleukin 31 (IL-31) is a four-helix cytokine made predominantly by Th2 CD4+ T cells. It was initially identified as being associated with the promotion of atopic dermatitis, where increased levels of IL-31 levels have been found and IL-31 induced the expression of proinflammatory cytokines and chemokines in a human bronchial epithelial cell line. However, subsequent study has shown that IL-31RA knockout mice developed exacerbated type 2 inflammation in the lung following infection with Schistosoma mansoni eggs. In this study, we investigated the dynamic expression of IL-31 and IL-31RA during eight consecutive ovalbumin (OVA) challenges and measured the chemokines from lung alveolar epithelial cells induced by IL-31. In addition, we examined the effect deletion of IL-31RA has on lung inflammation and the differentiation of CD4+ T cells. Our results demonstrate that the expression of IL-31 and IL-31RA was elevated after each weekly OVA challenge, although slightly less of both observed after the first week of OVA challenge. IL-31 also promoted the expression of inflammatory chemokines CCL5, CCL6, CCL11, CCL16, CCL22, CCL28, CX3CL1, CXCL3, CXCL14 and CXCL16 in alveolar epithelial cells. Migration of macrophages and T cells was enhanced by culture supernatants of IL-31-stimulated alveolar epithelial cells. Lastly, and in contrast to the IL-31 results, mice deficient in IL-31RA developed exacerbated lung inflammation, increased IL-4-positive cell infiltrates and elevated Th2 cytokine responses in draining lymph nodes. The proliferation of IL-31RA-/- CD4+ T cells was enhanced in vitro after anti-CD3/anti-CD28 antibody stimulation. These data indicate that IL-31/IL-31RA may play dual roles, first as an early inflammatory mediator promoting the secretion of chemokines to recruit inflammatory cells, and subsequently as a late inflammatory suppressor, limiting Th2 cytokine responses in allergic asthma.

10.
F1000Res ; 6: 2015, 2017.
Article in English | MEDLINE | ID: mdl-29479423

ABSTRACT

Background: Recently, several human monoclonal antibodies that target conserved epitopes on the stalk region of influenza hemagglutinin (HA) have shown broad reactivity to influenza A subtypes. Also, vaccination with recombinant chimeric HA or stem fragments from H3 influenza viruses induce broad immune protection in mice and humans. However, it is unclear whether stalk-binding antibodies can be induced in human memory B cells by seasonal H3N2 viruses. Methods: In this study, we recruited 13 donors previously exposed to H3 viruses, the majority (12 of 13) of which had been immunized with seasonal influenza vaccines. We evaluated plasma baseline strain-specific and stalk-reactive anti-HA antibodies and B cell recall responses to inactivated H3N2 A/Victoria/361/2011 virus in vitro using a high throughput multiplex (mPlex-Flu) assay. Results: Stalk-reactive IgG was detected in the plasma of 7 of the subjects. Inactivated H3 viral particles rapidly induced clade cross-reactive antibodies in B cell cultures derived from all 13 donors. In addition, H3 stalk-reactive antibodies were detected in culture supernatants from 7 of the 13 donors (53.8%).  H3 stalk-reactive antibodies were also induced by H1 and H7 subtypes. Interestingly, broadly cross-reactive antibody recall responses to H3 strains were also enhanced by stimulating B cells in vitro with CpG 2006 ODN in the presence of IL-15. H3 stalk-reactive antibodies were detected in  CpG 2006 ODN + IL-15 stimulated B cell cultures derived from 12 of the 13 donors (92.3%), with high levels detected in cultures from 7 of the 13 donors. Conclusions: Our results demonstrate that stalk-reactive antibody recall responses induced by seasonal H3 viruses and CpG 2006 ODN can be enhanced by IL-15.

11.
World J Gastroenterol ; 14(40): 6244-8, 2008 Oct 28.
Article in English | MEDLINE | ID: mdl-18985818

ABSTRACT

AIM: To construct a prokaryotic expression vector carrying Campylobacter jejuni peb1A gene and express it in Escherichia coli. Immunoreactivity and antigenicity of rPEB1 were evaluated. The ability of rPEB1 to induce antibody responses and protective efficacy was identified. METHODS: peb1A gene was amplified by PCR, target gene and prokaryotic expression plasmid pET28a (+) was digested with BamHI and XhoI, respectively. DNA was ligated with T4 DNA ligase to construct recombinant plasmid pET28a(+)-peb1A. The rPEB1 was expressed in E. coli BL21 (DE3) and identified by SDS-PAGE. BALB/c mice were immunized with rPEB1. ELISA was used to detect the specific antibody titer and MTT method was used to measure the stimulation index of spleen lymphocyte transformation. RESULTS: The recombinant plasmid pET28a (+)-peb1A was correctly constructed. The expression output of PEB1 protein in pET28a (+)-peb1A system was approximately 33% of total proteins in E. coli. The specific IgG antibody was detected in serum of BALB/c mice immunized with rPEB1 protein. Effective immunological protection with a lower sickness incidence and mortality was seen in the mice suffering from massive C. jejuni infection. CONCLUSION: rPEB1 protein is a valuable candidate for C. jejuni subunit vaccine.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Vaccines/immunology , Campylobacter Infections/prevention & control , Campylobacter jejuni/immunology , Administration, Oral , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/administration & dosage , Antigens, Bacterial/genetics , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/genetics , Campylobacter Infections/immunology , Campylobacter Infections/microbiology , Campylobacter jejuni/genetics , Cell Proliferation , Cells, Cultured , Cloning, Molecular , Disease Models, Animal , Dose-Response Relationship, Immunologic , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Vectors , Injections, Intramuscular , Injections, Subcutaneous , Lymphocyte Activation , Mice , Mice, Inbred BALB C , T-Lymphocytes/immunology , Time Factors , Vaccines, Synthetic/immunology
12.
Biochem Biophys Res Commun ; 367(2): 427-34, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18178159

ABSTRACT

Generation of effective CTL responses is the goal of many vaccination protocols. However, to what extant T cell precursor frequencies will generate a CD8(+) CTL response has not been elucidated properly. In this study, we employed a model system, in which naive CD4(+) and CD8(+) T cells derived from ovalbumin (OVA)-specific TCR transgenic OT II and OT I mice were used for adoptive transfer into wild-type, Ia(b-/-) gene knockout and transgenic RIP-mOVA mice, and assessed OVA-pulsed DC (DC(OVA))-stimulated CD8(+) CTL responses in these mice. We demonstrated that (i) a critical threshold exists above which T cells precursor frequency cannot enhance the CTL responses in wild-type C57BL/6 mice, (ii) increasing CD8(+) T cell precursors is required to generate CTL responses but with functional memory defect in absence of CD4(+) T cell help, and (iii) increasing CD4(+) and CD8(+) T cell precursors overcomes immune suppression to DC(OVA)-stimulated CD8(+) CTL responses in transgenic RIP-mOVA mice with OVA-specific self immune tolerance. Taken together, these findings may have important implications for optimizing immunotherapy against cancer.


Subject(s)
Immunity, Innate/immunology , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology , Animals , Cell Differentiation/immunology , Cells, Cultured , Mice , Mice, Inbred C57BL , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...