Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Chemosphere ; 351: 141231, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237781

ABSTRACT

Simultaneous anammox-denitrification is effectively operated in two types, i.e., the anammox-denitritation (SAD pattern) and the anammox-denitratation (PDA pattern). The nitrate derived from inevitable nitrite oxidization likely determines the practical operational pattern of the coupling system, while little information is available regarding the microbial characteristics during the pattern conversion. Here, the single-stage bioreactor coupling anammox with denitrification was operated under conditions with a changed ratio of influent nitrite and nitrate. Results showed that the bioreactor exhibited a robust performance during the conversion from SAD to PDA patterns, corresponding with the total nitrogen removal efficiency ranging from 89.5% to 92.4%. Distinct community structures were observed in two patterns, while functional bacteria including the genera Denitratisoma, Thauera, Candidatus Brocadia, and Ca. Jettenia steadily co-existed. Meanwhile, the high transcription of hydrazine synthase genes demonstrated a stable anammox process, while the up-regulated transcription of nitrite and nitrous oxide reductase genes indicated that the complete denitrification process was enhanced for total nitrogen removal during the PDA pattern. Ecologically, stochastic processes dominantly governed the community assembly in two patterns. The PDA pattern improved the interconnectivity of communities, especially for the cooperative behaviors between dominant denitrifying bacteria and low-abundant species. These findings deepen our understanding of the microbial mechanism underlying the different patterns of the coupling system and potentially expand its engineering application.


Subject(s)
Nitrates , Nitrites , Anaerobic Ammonia Oxidation , Oxidation-Reduction , Denitrification , Bacteria/genetics , Bioreactors , Nitrogen , Sewage
2.
Environ Res ; 246: 118141, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38191046

ABSTRACT

The conventional activated sludge (CAS) process is a widely used method for wastewater treatment due to its effectiveness and affordability. However, it can be prone to sludge abnormalities such as sludge bulking/foaming and sludge loss, which can lead to a decrease in treatment efficiency. To address these issues, a novel bag-based fixed activated sludge (BBFAS) system utilizing mesh bags to contain the sludge was developed for low carbon/nitrogen ratio wastewater treatment. Pilot-scale experiments demonstrated that the BBFAS system could successfully avoid the sludge abnormalities. Moreover, it was not affected by mass transfer resistance and exhibited significantly higher nitrogen removal efficiency, surpassing that of the CAS system by up to 78%. Additionally, the BBFAS system demonstrated comparable organic matter removal efficiency to CAS system. 16S rRNA gene high-throughput sequencing revealed that the bacterial community structure within the BBFAS system was significantly different from that of the CAS system. The bacteria associated with ammonium removal were more abundant in the BBFAS system than in the CAS system. The abundance of Nitrospira in the BBFAS could reach up to 6% and significantly higher than that in the CAS system, and they were likely responsible for both ammonia-oxidizing and nitrite-oxidizing functions. Clear stratification of microbial communities was observed from the outer to inner layers of the bag components due to the gradients of dissolved oxygen and other substrates. Overall, this study presents a promising approach for avoiding activated sludge abnormalities while maintaining high pollutant removal performance.


Subject(s)
Microbiota , Sewage , Sewage/microbiology , Nitrification , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Nitrogen/analysis , Bioreactors/microbiology
3.
Environ Res ; 244: 117933, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38097061

ABSTRACT

Despite reliable nitrite supply through partial denitrification, the adaptation of denitrifying bacteria to low temperatures remains elusive in partial denitrification and anammox (PDA) systems. Here, temporal differentiations of the structure, activity, and relevant cold-adaptation mechanism of functional bacteria were investigated in a lab-scale PDA bioreactor at decreased temperature. Although distinct denitrifying bacteria dominated after low-temperature stress, both short- and long-term stresses exerted differential selectivity towards the species with close phylogenetic distance. Species Azonexus sp.149 showed high superiority over Azonexus sp.384 under short-term stress, and long-term stress improved the adaptation of Aquabacterium sp.93 instead of Aquabacterium sp.184. The elevated transcription of nitrite reductase genes suggested that several denitrifying bacteria (e.g., Azonexus sp.149) could compete with anammox bacteria for nitrite. Species Rivicola pingtungensis and Azonexus sp.149 could adapt through various adaptation pathways, such as the two-component system, cold shock protein (CSP), membrane alternation, and electron transport chain. By contrast, species Zoogloea sp.273 and Aquabacterium sp.93 mainly depended on the CSP and oxidative stress response. This study largely deepens our understanding of the performance deterioration in PDA systems during cold shock and provides several references for efficient adaptation to seasonal temperature fluctuation.


Subject(s)
Denitrification , Nitrites , Nitrites/metabolism , Temperature , Anaerobic Ammonia Oxidation , Phylogeny , Bacteria/genetics , Bacteria/metabolism , Oxidation-Reduction , Bioreactors/microbiology , Nitrogen/metabolism , Sewage
4.
Article in English | MEDLINE | ID: mdl-36834289

ABSTRACT

Municipal sewage treatment plants (MSTPs) are environmental pools for antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which is cause for growing environmental-health concerns. In this study, the effects of different wastewater treatment processes on microbial antibiotic resistance in four MSTPs were investigated. PCR, q-PCR, and molecular cloning integrally indicated that the tetracycline resistance (tet) genes significantly reduced after activated-sludge treatment. Illumina high-throughput sequencing revealed that the broad-spectrum profile of ARGs and mobile element genes (MGEs) were also greatly decreased by one order of magnitude via activated sludge treatment and were closely associated with each other. Correlations between ARGs and bacterial communities showed that potential ARB, such as Acinetobacter, Bacteroides, and Cloaibacterium, were removed by the activated-sludge process. Sedimentation processes cannot significantly affect the bacterial structure, resulting in the relative abundance of ARGs, MGEs, and ARB in second-clarifier effluent water being similar to activated sludge. A comprehensive study of ARGs associated with MGEs and bacterial structure might be technologically guided for activated sludge design and operation in the MSTPs, to purposefully control ARGs carried by pathogenic hosts and mobility.


Subject(s)
Microbiota , Sewage , Sewage/microbiology , Genes, Bacterial , Angiotensin Receptor Antagonists , Anti-Bacterial Agents/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Drug Resistance, Microbial/genetics , High-Throughput Nucleotide Sequencing , Interspersed Repetitive Sequences
5.
J Environ Sci (China) ; 127: 273-283, 2023 May.
Article in English | MEDLINE | ID: mdl-36522059

ABSTRACT

The occurrence of antibiotic resistance genes (ARGs) in various environments has drawn worldwide attention due to their potential risks. Previous studies have reported that a variety of substances can enhance the occurrence and dissemination of ARGs. However, few studies have compared the response of ARGs under the stress of different organic matters in biological wastewater treatment systems. In this study, seven organic pollutants were added into wastewater treatment bioreactors to investigate their impacts on the ARG occurrence in activated sludge. Based on high-throughput sequencing, it was found that the microbial communities and ARG patterns were significantly changed in the activated sludge exposed to these organic pollutants. Compared with the non-antibiotic refractory organic matters, antibiotics not only increased the abundance of ARGs but also significantly changed the ARG compositions. The increase of Gram-negative bacteria (e.g., Archangium, Prosthecobacter and Dokdonella) carrying ARGs could be the main cause of ARG proliferation. In addition, significant co-occurrence relationships between ARGs and mobile genetic elements were also observed in the sludge samples, which may also affect the ARG diversity and abundance during the organic matter treatment in the bioreactors. Overall, these findings provide new information for better understanding the ARG occurrence and dissemination caused by organic pollutants in wastewater treatment systems.


Subject(s)
Environmental Pollutants , Sewage , Sewage/microbiology , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Drug Resistance, Microbial/genetics
6.
Water Res ; 212: 118105, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35074670

ABSTRACT

Activated sludge in wastewater treatment bioreactors contains diverse bacteria, while little is known about the community structure of bacteria responsible for degradation of refractory organic compounds (ROCs). In this study, 10 ROCs frequently detected in sewage were investigated, and the potential bacteria degrading these ROCs were analyzed by DNA stable isotope probing and high-throughput sequencing. The results showed that the bacterial communities responsible for degradation of different ROCs were largely different. A total of 84 bacterial genera were found to be involved in degrading at least one of the 10 ROCs, however, only six genera (Acinetobacter, Bacteroides, Bosea, Brevundimonas, Lactobacillus and Pseudomonas) were common to all 10 ROCs. This suggests that different ROCs may have specific assimilating bacteria in the activated sludge. Our results also showed that these ROC-degrading bacteria are difficult to isolate by conventional methods and that most of them have relatively low relative abundance in municipal wastewater treatment bioreactors. Development of new technologies to increase the abundance and activity of these bacteria may significantly improve the removal efficiency of ROCs from wastewater.


Subject(s)
Bacteria , Sewage , Bacteria/genetics , Bioreactors , Isotopes , Wastewater
7.
Sci Total Environ ; 813: 152519, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-34968587

ABSTRACT

The simultaneous anammox and denitrification (SAD) system has received growing interest for the enhanced nitrogen removal, while the ecological traits of microbial community including spatial distribution characteristics, assembly processes and interspecies interactions have not been fully unraveled. The present study applied metagenomics and ecological analysis methods to gain the ecological traits of microbial communities in the SAD system across different organic substrate loadings. Results showed that organic matter significantly affected the bioreactor performance, and the optimal total nitrogen removal efficiency reached 93.4 ± 0.7% under the COD concentrations of 180 ± 18.2 mg/L. Functional organisms including Candidatus Brocadia (3.9%), Denitratisoma (1.6%), Dokdonella (4.4%) and Thauera (4.6%) obviously enriched under the optimal organic loading conditions. Moreover, microbial communities were significantly governed by deterministic process under high organic concentrations, and the denitrifying organisms displayed important ecological roles in the communities. Although anammox bacteria obviously enriched at the middle of bioreactor, it possessed the highest expression activities at both bottom and middle sites. Denitrifying bacteria that enriched at the bottom sites strongly achieved nitrate reduction and provided nitrite for anammox bacteria, while these organisms trended to compete nitrite with anammox bacteria at the middle site. These findings highlight the importance of microbial ecology in the SAD systems, which may expand our understanding of the synergistic patterns between anammox and denitrifying bacteria.


Subject(s)
Denitrification , Nitrogen , Anaerobic Ammonia Oxidation , Bacteria/genetics , Bioreactors , Oxidation-Reduction , Sewage , Wastewater
8.
Ecotoxicology ; 30(7): 1399-1407, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33210230

ABSTRACT

Heterotrophic denitrification is widely applied in wastewater treatment processes to remove nitrate. However, the ability of the heterotrophic denitrifying sludge to use inorganic matter as electron donors to perform autotrophic denitrification has rarely been investigated. In this study, we enriched heterotrophic denitrifying sludge and demonstrated its sulfur- and iron- oxidizing abilities and denitrification performance with batch experiments. Based on high-throughput sequencing of 16S rRNA genes, high diversity and abundance of sulfur-oxidizing bacteria (SOB) (e.g., Sulfuritalea, Thiobacillus, and Thiothrix) and iron (II)-oxidizing bacteria (FeOB) (e.g., Azospira and Thiobacillus) were observed. Metagenomic sequencing and genome binning results further suggested that the SOB in the heterotrophic denitrifying sludge were mainly Alphaproteobacteria and Betaproteobacteria instead of Gammaproteobacteria and Epsilonproteobacteria. The similarities of potential iron-oxidizing genes with known sequences were very low (32-51%), indicating potentially novel FeOB species in this system. The findings of this study suggested that the heterotrophic denitrifying sludge harbors diverse mixotrophic denitrifying bacterial species, and based on this finding, we proposed that organic carbon and inorganic electron donors (e.g., sulfur, thiosulfate, and iron) could be jointly used in engineering practices according to the quality and quantity of wastewater to balance the cost and efficiency of the denitrification process.


Subject(s)
Denitrification , Sewage , Autotrophic Processes , Bioreactors , Iron , Nitrates , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Sulfur
9.
Water Res ; 184: 116137, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32750586

ABSTRACT

The formation of estrogenic intermediates, i.e. nonylphenol diethoxylate (NP2EO), nonylphenol monoethoxylate (NP1EO), and nonylphenol (NP), following nonylphenol ethoxylates (NPEOs) biodegradation in textile wastewater raises concerns about its endocrine disruptive activity, but the estrogenicity changes of textile wastewater throughout biological treatment processes remain unknown. In the present study, the estrogenicity of textile wastewater sampled from 10 wastewater treatment plants (WWTPs) were investigated using the reporter gene-based T47D-KBluc bioassay. Results showed that the estrogenicity of the textile wastewater significantly increased after either anaerobic or aerobic treatment in all WWTPs, with an average fold change of 3.21, although traditional pollutants were effectively removed. The estradiol equivalents of the effluent (ranging from 1.50 to 4.12 ng-E2/L) were generally higher than published effect based trigger values, indicating an increased risk for the receiving waters. Removal efficiency was high (84.46%) for NPEOs, but was low for NP2EO and NP1EO in the biological treatment processes. Nevertheless, NP had increased concentrations after the treatment. Bioanalytical equivalent concentration of the textile wastewater and that of NP2EO, NP1EO, and NP showed a good linear correlation, of which NP alone contributed more than 70% to the observed estrogenicity. Extending hydraulic retention time was found effective in reducing the estrogenicity as it allows relatively complete degradation of NP, which was further confirmed by running lab-scale A/O reactors fed with NP10EO. The results may extend our knowledge regarding the estrogenicity of textile wastewater and its reduction technologies used in WWTPs.


Subject(s)
Wastewater , Water Pollutants, Chemical , Ethylene Glycols , Textiles , Wastewater/analysis , Water Pollutants, Chemical/analysis
10.
Environ Int ; 142: 105864, 2020 09.
Article in English | MEDLINE | ID: mdl-32563772

ABSTRACT

Aromatic matters are widely present in wastewater, especially industrial wastewater, and may lead to a high abundance of antibiotic resistance genes (ARGs) in wastewater treatment bioreactors and stimulate horizontal transfers of ARGs. Here, we investigated a practical approach that applying ozone pretreatment to mitigate ARGs in bioreactors treating wastewater containing a typical aromatic pollutant, p-aminophenol (PAP). The results showed that ozone pretreatment could effectively reduce the aromaticity of wastewater, and the relative abundance of ARGs in the bioreactor fed with ozone treated wastewater decreased by over 70% compared to the control reactor. Multidrug, quinolone, mupirocin, polymyxin, aminoglycoside, glycopeptide, beta-lactam, and trimethoprim resistance genes were all reduced in the bioreactors receiving wastewater pretreated by ozone. Metagenomic analysis suggested that the reduction of ARGs could be attributed to the co-occurrence of ARGs and aromatic degradation genes in bacteria. Furthermore, we expanded our analysis to investigate 71 metagenomes from different environments, and the results indicated that the impact of aromatics on ARG abundance widely occurs in various ecosystems and confirmed that high levels of aromatics could lead to high abundance of ARGs. Taken together, our work confirmed that the aromatics played critical roles in selecting ARGs and proposed a feasible approach to reduce ARGs in wastewater treatment bioreactors.


Subject(s)
Ozone , Wastewater , Aminophenols , Anti-Bacterial Agents/pharmacology , Bioreactors , Drug Resistance, Microbial/genetics , Ecosystem , Genes, Bacterial
11.
J Hazard Mater ; 396: 122738, 2020 09 05.
Article in English | MEDLINE | ID: mdl-32361132

ABSTRACT

Transmission of antibiotic resistance genes (ARGs) via air media, such as particulate matter, has been intensively investigated due to human exposure through inhalation. However, whether particulate matter originating from the atmospheric environment of composting plants can impact ARG abundance during composting is unknown. Here, we investigated the effects of the atmospheric environment of composting plants on ARG abundance during sewage sludge composting using semi-permeable membrane-covered thermophilic composting (smTC) and conventional thermophilic composting (cTC). After smTC treatment, the total abundances of ARGs and mobile genetic elements (MGEs) decreased by 42.1 % and 38.1 % compared with those of the initial phase, respectively, but they increased by 4.5- and 1.6-fold after cTC, respectively. This result suggested that smTC was more efficient at decreasing ARGs and MGEs than cTC, mainly due to a significant reduction in bacterial contamination from the atmospheric environment of composting plants that accelerated the resurgence of ARGs and MGEs. Furthermore, culture experiments demonstrated that the abundance and diversity of antibiotic-resistant bacteria during the mature phase of smTC were also significantly (P <  0.05) lower than those in the cTC treatment. Thus, covering composting with a semi-permeable membrane could decrease the risk of ARGs spreading.


Subject(s)
Composting , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Humans , Interspersed Repetitive Sequences , Manure , Sewage
12.
Ying Yong Sheng Tai Xue Bao ; 30(10): 3563-3571, 2019 Oct.
Article in Chinese | MEDLINE | ID: mdl-31621244

ABSTRACT

We monitored the type and content of airborne pollen in Haidian District, Beijing City from 2012 to 2016 by the gravity precipitation method, and analyzed the variety of pollen, peak distribution features and changes of its content, and discontinuous variation of concentration. Multiple time scale analysis was carried out for pollen concentration by the ensemble empirical mode decomposition method (EEMD). The relationship between pollen concentration and meteorological factors was analyzed. The results indicated that during the research period, the main types of airborne pollen changed. Woody plants such as Cupressaceae and Salicaceae instead of herbaceous plants contributed the most content of pollen. There was no significant change of the yearly peak distribution of pollen concentration. The concentration in recent five years reduced, while the concentration of herbaceous plants (such as Scolopacjdae) increased. During the statistics period, pollen concentration showed discontinuous changes in early April, late May and early August. Pollen concentration had the change cycle of quasi 2 d, quasi 51 d and quasi 128 d. Among all meteorological factors, temperature played a dominant role in driving the concentration, which may significantly rise during 16 to 18 ℃. The impact of temperature changes on the daily concentration may be delayed and continuous; it is often highly related to the concentration 2-7 d later. Sunshine duration and wind speed had the most significant impact on daily pollen concentration.


Subject(s)
Air Pollutants , Beijing , China , Cities , Environmental Monitoring , Meteorological Concepts , Pollen , Seasons
13.
Chemosphere ; 224: 202-211, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30822726

ABSTRACT

Aquaculture has attracted significant attention as an environmental gateway to the development of antibiotic resistance. The industry of Chinese mitten crab Eriocheir sinensis contributes significantly to the freshwater aquaculture industry in China. However, the situation of antibiotic resistance in the E. sinensis aquaculture environment is not known. In this study, high-throughput sequencing based metagenomic approaches were used to comprehensively investigate the structure of bacterial communities, the abundance and diversity of antibiotic resistance genes (ARGs), as well as mobile genetic elements (MGEs) in three E. sinensis aquaculture ponds in Jiangsu Province, China. The dominant phyla were Proteobacteria, Actinobacteria, and Bacteroidetes in water samples and Proteobacteria, Chloroflexi, Verrucomicrobia, and Bacteroidetes in sediment samples. Bacitracin and multidrug were predominant ARG types in water and sediment samples, respectively. There was a significant correlation between MGEs and ARGs. In particular, plasmids were the most abundant MGEs and strongly correlated with ARGs. This is the first study of antibiotic resistome that uses metagenomic approaches in the E. sinensis aquaculture environment. The results indicate that the opportunistic pathogens may acquire ARGs via horizontal gene transfer, intensifying the potential risk to human health.


Subject(s)
Anti-Bacterial Agents/pharmacology , Aquaculture , Brachyura/growth & development , Drug Resistance, Microbial/genetics , Fresh Water/microbiology , Genes, Bacterial , Metagenomics/methods , Animals , China , Drug Resistance, Microbial/drug effects , Gene Transfer, Horizontal , Humans
14.
Sci Total Environ ; 651(Pt 2): 2148-2157, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30326447

ABSTRACT

Due to complexity and variety of pharmaceutical wastewater composition, little is known as for functionally important microflora of pharmaceutical wastewater treatment plants (pWWTPs). We compared bacterial composition and diversity of pWWTPs (27 sludge samples collected from 12 full-scale pWWTPs) with those of other industrial (iWWTPs) (27 samples) and municipal wastewater treatment plants (mWWTPs) (27 samples) through meta-analysis based on 16S rRNA gene amplicon sequencing, and identified putatively important organisms and their ecological correlations. Non-metric multidimensional scaling indicated that the pWWTPs, iWWTPs and mWWTPs showed distinctive differences in bacterial community composition (P < 1e-04), and the pWWTPs had significantly lower bacterial diversity than the mWWTPs (P < 1e-06). Thermotogae and Synergistetes phyla only strictly dominated in the pWWTPs, and 26, 30 and 6 specific genera were identified in the pWWTPs, mWWTPs and iWWTPs, respectively. Totally, 15 and 1300 OTUs were identified as core and occasional groups, representing 23.2% and 66.2% of the total read abundance of the pWWTPs, respectively. Permutational multivariate analysis of variance revealed that the bacterial components were clearly clustered corresponding to the types of pharmaceutical wastewater, and a total of 129 local specific OTUs were identified in the pWWTPs, among which anticancer antibiotics pWWTPs had the highest number of specific OTUs (40 ones). Co-occurrence network revealed that the species dominating in the same type of pWWTPs tended to co-occur much more frequently than theoretical random expectation. The results may extend our knowledge regarding the ecological status and correlation of the key microflora in pWWTPs.


Subject(s)
Bacteria/isolation & purification , Waste Disposal, Fluid , Wastewater/microbiology , Bacteria/classification , Bacteria/genetics , China , Drug Industry , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis
15.
Sci Total Environ ; 655: 1355-1363, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30577127

ABSTRACT

Simultaneous anammox and denitrification (SAD) is a newly developed wastewater treatment process efficient in nitrogen removal, but its underlying microbiological mechanisms during start-up remains unknown. This study investigated the changing patterns of functional bacteria and genes, as well as their correlation during the start-up (260 d) of the SAD systems in two lab-scale up-flow anaerobic sludge blanket bioreactors separately inoculated with anaerobic granular sludge (R1) and aerobic floccular sludge (R2). Results showed that high total nitrogen removal was achieved in the SAD systems of both R1 (88.25%) and R2 (89.42%). High-throughput sequencing of 16S rRNA gene amplicons revealed that Armatimonadetes phylum had a high abundance (44.34%) in R2, while was not detectable in R1 during the anammox stage. However, the SAD bioreactors retained inherent microbial community and the inoculation with different sludge showed less notable effects on their microbial composition. In the SAD systems, Candidatus Brocadia had high abundance in R1 (2.93%) and R2 (4.64%) and played important role in anammox. Network analysis indicated that Denitratisoma and Dokdonella were positively correlated with nitrite reductase genes nirS and nirK (p < 0.05), while Thermomonas and Pseudomonas showing a positive correlation with nitrate reductase gene narG (p < 0.05) were mainly responsible for the nitrate reduction in the SAD systems. Moreover, the overwhelming dominance of narG v.s. napA revealed the crucial roles of respiratory nitrate reduction in the bioreactors. The results extend our knowledge regarding the microbial ecology of the SAD system, which might be practically helpful for application of the process in wastewater treatment.


Subject(s)
Bacteria/metabolism , Bioreactors , Nitrogen/metabolism , Waste Disposal, Fluid , Ammonia/metabolism , Denitrification , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis
16.
Appl Microbiol Biotechnol ; 102(5): 2455-2464, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29396586

ABSTRACT

To comprehensively understand the profile of free-living bacteria and potential bacterial pathogens in sewage treatment plants (STPs), this study applied high-throughput sequencing-based metagenomics approaches to investigate the effects of activated sludge (AS) treatment process and ultraviolet (UV) disinfection on the community of bacterial pathogens in two full-scale STPs. A total of 23 bacterial genera were identified as free-living bacteria, and 243 species/OTU97% were identified as potential bacterial pathogens, 6 of which were confidently detected in the STPs (with the total abundances ranging from 0.02 to 14.19%). Both diversity and relative abundance of the detected bacterial pathogens decreased obviously after AS treatment process (p < 0.05), and increased slightly after sedimentation (p < 0.05). UV disinfection shows no obvious effects on the total relative abundance of the free-living pathogenic bacteria in sewage. Although large amounts of the particle-bound pathogens were eliminated through the sewage treatment process, the STPs could not effectively remove the free-living bacterial pathogens, and some pathogenic bacteria (e.g., Pseudomonas aeruginosa) present in the effluent had higher relative abundance after UV disinfection. Overall, the results extend our knowledge regarding the community of potential pathogens (especially free-living pathogens) in STPs.


Subject(s)
Bacteria/isolation & purification , Sewage/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/radiation effects , High-Throughput Nucleotide Sequencing , Metagenomics , Ultraviolet Rays , Waste Disposal Facilities
17.
J Hazard Mater ; 343: 166-175, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-28950204

ABSTRACT

To understand the effects of metal ions and nanoparticles (NPs) on nitrifying bacterial communities, this study investigates the impacts of zinc (Zn) NPs, zinc oxide (ZnO) NPs and Zn ions on the nitrifying bacterial communities. Under low Zn concentration (0.1mgL-1), the nitrification rate was promoted by Zn ions and inhibited by the two NPs, indicating that the toxicity of NPs was caused by the NPs themselves instead of the released Zn ions. Further analysis showed that both Zn NPs and ZnO NPs could result in substantial reactive oxygen species (ROS) production in the nitrifying bacteria community. The inhibition was strongly correlated with amoA gene expression, but not with the expression of hao and nxrA genes. These results indicated that the main difference of the Zn ions and Zn NPs on nitrifying bacterial community could be due to the different impacts on the ROS production and amoA gene expression. Collectively, the findings in this study advanced understanding of the different effects of Zn NPs, ZnO NPs and Zn ions on nitrifying bacteria.


Subject(s)
Bacteria/drug effects , Metal Nanoparticles/toxicity , Zinc Oxide/toxicity , Zinc/toxicity , Bacteria/genetics , Bacteria/metabolism , Gene Expression Regulation, Bacterial/drug effects , Genes, Bacterial/genetics , L-Lactate Dehydrogenase/metabolism , Nitrification/drug effects , RNA, Ribosomal, 16S/genetics , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
18.
Water Res ; 101: 309-317, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27267479

ABSTRACT

High-throughput sequencing-based metagenomic approaches were used to comprehensively investigate ultraviolet effects on the microbial community structure, and diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in biologically treated wastewater. After ultraviolet radiation, some dominant genera, like Aeromonas and Halomonas, in the wastewater almost disappeared, while the relative abundance of some minor genera including Pseudomonas and Bacillus increased dozens of times. Metagenomic analysis showed that 159 ARGs within 14 types were detectable in the samples, and the radiation at 500 mJ/cm(2) obviously increased their total relative abundance from 31.68 ppm to 190.78 ppm, which was supported by quantitative real time PCR. As the dominant persistent ARGs, multidrug resistance genes carried by Pseudomonas and bacitracin resistance gene bacA carried by Bacillus mainly contributed to the ARGs abundance increase. Bacterial community shift and MGEs replication induced by the radiation might drive the resistome alteration. The findings may shed new light on the mechanism behind the ultraviolet radiation effects on antibiotic resistance in wastewater.


Subject(s)
Disinfection , Wastewater/microbiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Metagenomics , Ultraviolet Rays
19.
Ecotoxicol Environ Saf ; 132: 260-9, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27340885

ABSTRACT

The presence of pathogenic bacteria and the dissemination of antibiotic resistance genes (ARGs) may pose big risks to the rivers that receive the effluent from municipal wastewater treatment plants (WWTPs). In this study, we investigated the changes of bacterial community and ARGs along treatment processes of one WWTP, and examined the effects of the effluent discharge on the bacterial community and ARGs in the receiving river. Pyrosequencing was applied to reveal bacterial community composition including potential bacterial pathogen, and Illumina high-throughput sequencing was used for profiling ARGs. The results showed that the WWTP had good removal efficiency on potential pathogenic bacteria (especially Arcobacter butzleri) and ARGs. Moreover, the bacterial communities of downstream and upstream of the river showed no significant difference. However, the increase in the abundance of potential pathogens and ARGs at effluent outfall was observed, indicating that WWTP effluent might contribute to the dissemination of potential pathogenic bacteria and ARGs in the receiving river.


Subject(s)
Anti-Bacterial Agents/toxicity , Drug Resistance, Microbial/genetics , Metagenomics/methods , Rivers/microbiology , Wastewater/microbiology , Water Pollutants, Chemical/toxicity , Water Purification/methods , Bacteria/drug effects , Bacteria/genetics , DNA, Bacterial , Environmental Monitoring/methods , Genes, Bacterial
20.
PLoS One ; 11(6): e0156854, 2016.
Article in English | MEDLINE | ID: mdl-27294780

ABSTRACT

To understand the diversity and abundance of antibiotic resistance genes (ARGs) in pharmaceutical wastewater treatment bioreactors, the ARGs in sludge from two full-scale pharmaceutical wastewater treatment plants (PWWTPs) were investigated and compared with sludge samples from three sewage treatment plants (STPs) using metagenomic approach. The results showed that the ARG abundances in PWWTP sludge ranged from 54.7 to 585.0 ppm, which were higher than those in STP sludge (27.2 to 86.4 ppm). Moreover, the diversity of ARGs in PWWTP aerobic sludge (153 subtypes) was higher than that in STP aerobic sludge (118 subtypes). In addition, it was found that the profiles of ARGs in PWWTP aerobic sludge were similar to those in STP aerobic sludge but different from those in PWWTP anaerobic sludge, suggesting that dissolve oxygen (DO) could be one of the important factors affecting the profiles of ARGs. In PWWTP aerobic sludge, aminoglycoside, sulfonamide and multidrug resistance genes were frequently detected. While, tetracycline, macrolide-lincosamide-streptogramin and polypeptide resistance genes were abundantly present in PWWTP anaerobic sludge. Furthermore, we investigated the microbial community and the correlation between microbial community and ARGs in PWWTP sludge. And, significant correlations between ARG types and seven bacterial genera were found. In addition, the mobile genetic elements (MGEs) were also examined and correlations between the ARGs and MGEs in PWWTP sludge were observed. Collectively, our results suggested that the microbial community and MGEs, which could be affected by DO, might be the main factors shaping the profiles of ARGs in PWWTP sludge.


Subject(s)
Bacteria/genetics , Bioreactors/microbiology , Biota/genetics , Drug Industry , Drug Resistance, Microbial/genetics , Interspersed Repetitive Sequences , Wastewater/microbiology , Water Purification/instrumentation , Anti-Bacterial Agents/pharmacology , Bacteria/classification , Bacteria/growth & development , Biodiversity , Genes, Bacterial , Metagenomics , Microbial Sensitivity Tests , Waste Disposal, Fluid/instrumentation , Waste Disposal, Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...