Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2312429, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655823

ABSTRACT

2D materials such as graphene, MoS2, and hexagonal BN are the most advanced solid lubricating materials with superior friction and anti-wear performance. However, as a typical surface phenomenon, the lubricating properties of 2D materials are largely dependent on the surrounding environment, such as temperature, stress, humidity, oxygen, and other environmental substances. Given the technical challenges in experiment for real-time and in situ detection of microscopic environment-material interaction, recent years have witnessed the acceleration of computational research on the lubrication behavior of 2D materials in realistic environments. This study reviews the up-to-date computational studies for the effect of environmental factors on the lubrication performance of 2D materials, summarizes the theoretical methods in lubrication from classical to quantum-mechanics ones, and emphasizes the importance of quantum method in revealing the lubrication mechanism at atomic and electronic level. An effective simulation method based on ab initio molecular dynamics is also proposed to try to provide more ways to accurately reveal the friction mechanisms and reliably guide the lubricating material design. On the basis of current development, future prospects, and challenges for the simulation and modeling in lubrication with realistic environment are outlined.

2.
Nat Commun ; 14(1): 3256, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37277362

ABSTRACT

Molybdenum disulfide has broad applications in catalysis, optoelectronics, and solid lubrication, where lanthanide (Ln) doping can be used to tune its physicochemical properties. The reduction of oxygen is an electrochemical process important in determining fuel cell efficiency, or a possible environmental-degradation mechanism for nanodevices and coatings consisting of Ln-doped MoS2. Here, by combining density-functional theory calculations and current-potential polarization curve simulations, we show that the dopant-induced high oxygen reduction activity at Ln-MoS2/water interfaces scales as a biperiodic function of Ln type. A defect-state pairing mechanism, which selectively stabilizes the hydroxyl and hydroperoxyl adsorbates on Ln-MoS2, is proposed for the activity enhancement, and the biperiodic chemical trend in activity is found originating from the similar trends in intraatomic 4f-5d6s orbital hybridization and interatomic Ln-S bonding. A generic orbital-chemistry mechanism is described for explaining the simultaneous biperiodic trends observed in many electronic, thermodynamic, and kinetic properties.

3.
BMC Genomics ; 24(1): 8, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36624393

ABSTRACT

BACKGROUND: Exosomes are nanosized membranous vesicles secreted by various types of cells, which facilitate intercellular communication by transporting bioactive compounds. Exosomes are abundant in biological fluids including semen, and their protein composition and the potential of seminal plasma exosomes (SPEs) as fertility biomarkers were elucidated in humans, however, little information is available regarding buffalo (Bubalus bubalis). Here, we examined protein correlation between spermatozoa, seminal plasma (SP), and SPEs, and we compared and analyzed protein differences between high-motility (H-motility) and low-motility (L-motility) SPEs in buffalo. RESULTS: SPEs were concentrated and purified by ultracentrifugation combined with sucrose density gradient centrifugation, followed by verification using western blotting, nanoparticle tracking analysis, and transmission electron microscopy. Protein composition in spermatozoa, SP and SPEs, and protein difference in H- and L-motility SPEs were identified by LC-MS/MS proteomic analysis and were functionally analyzed through comprehensive bioinformatics. Many SPEs proteins originated from spermatozoa and SP, and nearly one third were also present in spermatozoa and SP. A series of proteins associated with reproductive processes including sperm capacitation, spermatid differentiation, fertilization, sperm-egg recognition, membrane fusion, and acrosome reaction were integrated in a functional network. Comparative proteomic analyses showed 119 down-regulated and 41 up-regulated proteins in L-motility SPEs, compared with H-motility SPEs. Gene Ontology (GO) enrichment of differentially expressed proteins (DEPs) showed that most differential proteins were located in sperm and vesicles, with activities of hydrolase and metalloproteinase, and were involved in sperm-egg recognition, fertilization, single fertilization, and sperm-zona pellucida binding processes, etc. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differential proteins were mainly involved in the PPRP signaling pathway, calcium signaling pathway, and cAMP signaling pathway, among others. Furthermore, 6 proteins associated with reproduction were validated by parallel reaction monitoring analysis. CONCLUSION: This study provides a comprehensive description of the seminal plasma exosome proteome and may be of use for further screening of biomarkers associated with male infertility.


Subject(s)
Exosomes , Semen , Animals , Male , Humans , Semen/metabolism , Buffaloes , Sperm Motility , Chromatography, Liquid , Exosomes/metabolism , Proteomics , Tandem Mass Spectrometry , Spermatozoa/metabolism , Proteome/metabolism
4.
ACS Appl Mater Interfaces ; 13(50): 60182-60191, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34881876

ABSTRACT

Transition-metal nitrides (e.g., TiN, ZrN, TaN) are incredible materials with excellent complementary metal-oxide semiconductor compatibility and remarkable performance in refractory plasmonics and superconducting quantum electronics. Epitaxial growth of flexible transition-metal nitride films, especially at the wafer scale, is fundamentally important for developing high-performance flexible photonics and superconducting electronics, but the study is rare thus far. This work reports the high-quality epitaxy of 2-in. titanium nitride (TiN) films on flexible fluorophlogopite-mica (F-mica) substrates via reactive magnetron sputtering. Combined measurements of spectroscopic ellipsometry and electrical transport reveal the superior plasmonic and superconducting performance of TiN/F-mica films owing to the high single crystallinity. More interestingly, the superconductivity of these flexible TiN films can be manipulated by the bending states, and enhanced superconducting critical temperature TC is observed in convex TiN films with in-plane tensile strain. Density functional theory calculations reveal that the strain can tune the electron-phonon interaction strength and the resultant superconductivity of TiN films. This study provides a promising route toward integrating scalable single-crystalline transition-metal nitride films with flexible electronics for high-performance plasmonics and superconducting electronics.

5.
ACS Appl Mater Interfaces ; 13(2): 3377-3386, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33400484

ABSTRACT

Based on the superhydrophilicity of titanium dioxide (TiO2) after ultraviolet irradiation, it has a high potential in the application of antifogging. However, a durable superhydrophilic state and a broader photoresponse range are necessary. Considering the enhancement of the photoresponse of TiO2, doping is an effective method to prolong the superhydrophilic state. In this paper, a Fe3+ doped TiO2 film with long-lasting superhydrophilicity and antifogging is prepared by sol-gel method. The experiment and density-functional theory (DFT) calculations are performed to investigate the antifogging performance and the underlying microscopic mechanism of Fe3+ doped TiO2. Antifogging tests demonstrate that 1.0 mol % Fe3+ doping leads to durable antifogging performance which lasts 60 days. The DFT calculations reveal that the Fe3+ doping can both increase the photolysis ability of TiO2 under sunlight exposure and enhance the stability of the hydroxyl adsorbate on TiO2 surface, which are the main reasons for a long-lasting superhydrophilicity of TiO2 after sunlight exposure.

6.
ACS Appl Mater Interfaces ; 11(49): 46327-46336, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31718125

ABSTRACT

Oxygen reduction reaction (ORR) is a key microscopic process in many electrochemical applications of materials, where the requirements of their ORR performances may vary strikingly, for example, during the uses of MoS2 as an electrocatalyst and anticorrosion/lubricating coating in aqueous/humid environments, ORR should be activated and inhibited, respectively. To reveal a complete ORR profile of MoS2, using first-principles calculations, we examine the stabilities of various possible zero-dimensional point defects on the surface and one-dimensional edge defects and comprehensively explore the ORR activities on pristine MoS2 surface and those defects in acid/alkaline solutions. It is found that the ORRs on the pristine surface and surfaces with point defects always require large overpotentials (>1.0 V), indicating a defect-immune resistance of the planar MoS2 surface against the ORR. However, the ORR overpotentials on edge defects can reach as low as 0.66 V, corresponding to a relatively high activity close to that of the prototypical catalyst Pt (overpotential ∼0.45 V). Such contrasting ORR behaviors of point and edge defects are also understood in depth by analyzing the underlying thermodynamic and electronic-structure mechanisms. This work not only quantitatively explains the performances of MoS2 in both galvanic corrosion and electrochemical catalysis but also provides a useful structure-ORR map that can facilitate adapting the realistic MoS2 to versatile electrochemical applications.

7.
ACS Appl Mater Interfaces ; 11(37): 33850-33858, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31460744

ABSTRACT

The influence of planar defects, in the form of stacking faults, within perovskite oxides on catalytic activity has received little attention because controlling stacking-fault densities presents a major synthetic challenge. Furthermore, stacking faults in ceramics are not thought to appreciably impact surface chemistry, which partly explains why their direct effect on catalysis is generally ignored. Here, we show that Ruddlesden-Popper (RP) stacking faults in otherwise stoichiometric LaFeO3 can be broadly controlled by modulating the ceramic synthesis route. Electronic structure calculations along with electron microscopy and spectroscopy show that energetically favorable RP faults occur both near the surface and in bunches and enhance CO oxidation kinetics. Density functional theory (DFT) + U shows that subsurface RP faults strengthen the adsorption and co-adsorption of CO, O, and O2, which could lower the apparent activation energy of CO oxidation on faulted catalysts compared to that on their pristine counterparts. Our work suggests that planar defects should be considered a new and useful feature in hierarchal nanoscale design of future catalysts.

8.
J Phys Condens Matter ; 31(39): 395501, 2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31207586

ABSTRACT

Discovering highly in-plane anisotropic two-dimensional (2D) semiconductors with multiple superior properties (good stability, widely tunable bandgap and high mobility) are of great interest for fundamental studies and for developments of novel (opto)electronic devices. By means of state-of-the-art first-principles calculations, herein we present a thorough investigation on the stability, electronic properties and promising applications of previously unexplored 2D semiconductors-gold-selenium (ß-AuSe) with strong in-plane anisotropy, whose layered bulk counterpart was synthesized fifty years ago. We show that they have stable structures, widely tunable bandgap varying from 1.66 eV in monolayer to 0.70 eV in five-layer, strong light absorption coefficient (~105 cm-1) within the whole visible light range, and high/ultrahigh carrier mobility (103-105 cm2 V -1 s -1). More importantly, they show highly in-pane anisotropic behaviors in absorption coefficients, photoconductance and carrier mobility. Especially, the anisotropic ratio of carrier mobility is much higher than the literature reported ones. The above findings show that the in-plane anisotropic 2D ß-AuSe are promising candidates for developing polarization-sensitive photodetectors, synaptic devices and micro digital inverters based on multiple superior properties and highly anisotropic behaviors. Besides, few-layer ß-AuSe systems can serve as channel materials in field-effect transistors with high mobility or be applied in solar cells with strong light absorption. Our findings demonstrate that few-layer 2D ß-AuSe have great potential for multifunctional applications and thus stimulate immediately experimental interests.

9.
Phys Chem Chem Phys ; 21(23): 12121-12129, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-30950468

ABSTRACT

The thermodynamic and kinetic stabilities of an O adatom on graphene are critical factors for the formation of oxide defects in graphene, which leads to the breakdown of a graphene protective coating. To systematically understand various behaviors of an O adatom on graphene under the space conditions, the adsorption energies, diffusion paths and barriers, and penetration paths and barriers of the O adatom on pristine and functionalized graphene (e.g., -O, -OH, -H, and -F) are calculated using density functional theory, and the electronic structures are also analyzed in depth to reveal the microscopic mechanisms. We find that chemical functionalization increases both the adsorption stability and diffusion mobility of the O adatom on graphene, implying the possibly exacerbated destructive oxidation and even breakdown of the graphene-based coating. Furthermore, the penetration of the O adatom through pristine and functionalized graphene is also calculated, the occurrence of which is proved to be impossible in reality due to the associated extremely high energetic barriers. The calculated results, revealed mechanisms, and the gained insight into the corrosion resistance of graphene will be helpful for the design, synthesis, and application of related graphene-based protective coatings.

10.
J Phys Condens Matter ; 30(47): 475702, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30378570

ABSTRACT

Two-dimensional (2D) semiconductors SnP3 are predicted, from first-principles calculations, to host moderate band gaps (0.72 eV for monolayer and 1.07 eV for bilayer), ultrahigh carrier mobility (∼104 cm2 V-1 s-1 for bilayer), strong absorption coefficients (∼105 cm-1) and good stability. Moreover, the band gap can be modulated from an indirect character into a direct one via strain engineering. For experimental accessibility, the calculated exfoliation energies of monolayer and bilayer SnP3 are smaller than those of the common arsenic-type honeycomb structures GeP3 and InP3. More importantly, a semiconductor-to-metal transition is discovered with the layer number N > 2. We demonstrate, in remarkable contrast to the previous understandings, that such phase transition is largely driven by the correlation between lone-pair electrons of interlayer Sn and P atoms. This mechanism is universal for analogues phase transitions in arsenic-type honeycomb structures (GeP3, InP3 and SnP3).

11.
J Am Chem Soc ; 140(13): 4477-4480, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29558621

ABSTRACT

The local symmetry, beyond the averaged crystallographic structure, tends to bring unusual performances. Negative thermal expansion is a peculiar physical property of solids. Here, we report the delicate design of the localized symmetry breaking to achieve controllable thermal expansion in ScF3 nanoscale frameworks. Intriguingly, an isotropic zero thermal expansion is concurrently engineered by localized symmetry breaking, with a remarkably low coefficient of thermal expansion of about +4.0 × 10-8/K up to 675 K. This mechanism is investigated by the joint analysis of atomic pair distribution function of synchrotron X-ray total scattering and extended X-ray absorption fine structure spectra. A localized rhombohedral distortion presumably plays a critical role in stiffening ScF3 nanoscale frameworks and concomitantly suppressing transverse thermal vibrations of fluorine atoms. This physical scenario is also theoretically corroborated by the extinction of phonon modes with negative Grüneisen parameters in rhombohedral ScF3. The present work opens an untraditional chemical modification route to achieve controllable thermal expansion by breaking local symmetries in materials.

12.
J Phys Condens Matter ; 29(47): 475501, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-28980526

ABSTRACT

The stabilities of Ni metal and its derived compounds, including oxides, hydroxides, and oxyhydroxides under electrochemical conditions, can be readily predicted from the Ni Pourbaix diagram, where the formation free energies of the involved species are utilized to construct the phase stability map with respect to electrode potential and pH. We calculate and analyze the crystal structures, electronic structures, and thermodynamic energies of Ni metal and its compounds using different exchange-correlation functionals to density-functional-theory (DFT), including the semilocal LDA and GGA density functionals, the nonlocal metaGGA, and the hybrid density functionals. Next, we simulate the corresponding Ni Pourbaix diagrams to compare systematically the performance of the functional to each other and to experimental observations. We show that the structures and energies obtained from experimental databases may not be sufficiently accurate to describe direct electrochemical observations, and we explain how the electronic exchange within the density functionals plays a key role in determining the accuracy of the DFT calculated electronic, thermodynamic, and electrochemical properties. We find that only the hybrid density functional produces reliable results owing to the fractional contribution of exact Fock exchange included therein. Last, based on our accurate Ni Pourbaix diagram, we construct band-gap and magnetic electrochemical maps which can facilitate more experimental measurements and property assessments under variable potential and pH in the future.

13.
Sci Rep ; 7(1): 10080, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28855655

ABSTRACT

Solid phase crystallization offers an attractive route to synthesize Ni nanoparticles on a La2O3 support. These materials have shown great promise as catalysts for methane oxidation and similar reactions. Synthesis is achieved by the reduction of a LaNiO3 (LNO) precursor at high temperatures, but the reduction pathway can follow a variety of routes. Optimization of catalytic properties such as the long-term stability has been held back by a lack of understanding of the factors impacting the reduction pathway, and its strong influence on the structure of the resulting Ni/La2O3 catalyst. Here we show the first evidence of the importance of extended structural defects in the LNO precursor material (2D stacking faults and 3D inclusions) for determining the reaction pathway and therefore the properties of the final catalyst. Here we compare the crystallization of LNO nanoparticles via two different pathways using in-situ STEM, in-situ synchrotron XRD, and DFT electronic structure calculations. Control of extended defects is shown to be a key microstructure component for improving catalyst lifetimes.

14.
Phys Rev Lett ; 117(11): 115901, 2016 Sep 09.
Article in English | MEDLINE | ID: mdl-27661701

ABSTRACT

We identify a quasi-two-dimensional (quasi-2D) phonon mode in the layered-perovskite Ca_{3}Ti_{2}O_{7}, which exhibits an acoustic branch with quadratic dispersion. Using first-principles methods, we show this mode exhibits atomic displacements perpendicular to the layered [CaTiO_{3}]_{2} blocks comprising the structure and a negative Grüneisen parameter. Owing to these quasi-2D structural and dynamical features, we find that the mode can be utilized to realize unusual membrane effects, including a tunable negative thermal expansion (NTE) and a rare pressure-independent thermal softening of the bulk modulus. Detailed microscopic analysis shows that the NTE relies on strong intralayer Ti-O covalent bonding and weaker interlayer interactions, which is in contrast to conventional NTE mechanisms for perovskites, such as rigid-unit modes, structural transitions, and electronic or magnetic ordering. The general application of the quasi-2D lattice dynamics opens exciting avenues for the control of lattice dynamical and thermodynamic responses of other complex layered compounds through rational chemical substitution, as we show in A_{3}Zr_{2}O_{7} (A=Ca, Sr), and by heterostructuring.

15.
J Chem Phys ; 139(19): 194708, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24320345

ABSTRACT

By density functional theory calculations, the scanning tunneling microscopy (STM) images of various hydrogen clusters adsorbed on bilayer-graphene are systematically simulated. The hydrogen configurations of the STM images observed in the experiments have been thoroughly figured out. In particular, two kinds of hydrogen dimers (ortho-dimer, para-dimer) and two kinds of tetramers (tetramer-A, -B) are determined to be the hydrogen configurations corresponding to the ellipsoidal-like STM images with different structures and sizes. One particular hexamer (hexamer-B) is the hydrogen configuration generating the star-like STM images. For each hydrogen cluster, the simulated STM images show unique voltage-dependent features, which provides a feasible way to determine hydrogen adsorption states on graphene or graphite surface in the experiments by varying-voltage measurements. Stability analysis proves that the above determined hydrogen configurations are quite stable on graphene, hence they are likely to be detected in the STM experiments. Consequently, through systematic analysis of the STM images and the stability of hydrogen clusters on bilayer graphene, many experimental observations have been consistently explained.

16.
J Phys Condens Matter ; 25(5): 055304, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23300171

ABSTRACT

The electronic structure of zigzag graphene nanoribbon (ZGNR) is studied using density functional theory. The mechanisms underlying the quantum-confinement effect and edge magnetism in ZGNR are systematically investigated by combining the simulated results and some useful analytic models. The quantum-confinement effect and the inter-edge superexchange interaction can be tuned by varying the ribbon width, and the spin polarization and direct exchange splitting of the edge states can be tuned by varying their electronic occupations. The two edges of ZGNR can be equally or unequally tuned by charge doping or Li adsorption, respectively. The Li adatom has a site-selective adsorption on ZGNR, and it is a nondestructive and memorable approach to effectively modify the edge states in ZGNR. These systematic understanding and effective tuning of ZGNR electronics presented in this work are helpful for further investigation and application of ZGNR and other magnetic graphene systems.

17.
J Phys Condens Matter ; 23(43): 435007, 2011 Nov 02.
Article in English | MEDLINE | ID: mdl-21971019

ABSTRACT

The diffusion of hydrogen and deuterium monomers on hole-doped graphene (a planar graphitic lattice), the outside wall and the inside wall of hole-doped (6, 0) single-walled carbon nanotubes (a curved graphitic lattice) was investigated using density functional theory and density functional perturbation theory. The jump frequencies for the over-barrier transition and phonon-assisted quantum tunneling were calculated by transition state theory and small-polaron theory, respectively. The effects of the local curvature of the surface and the hole doping on the thermodynamic and kinetic properties of a hydrogen monomer on these graphitic lattices are discussed. Our results demonstrate that it is sufficient to judge the diffusional mobility of a hydrogen monomer on graphitic lattices from just the over-barrier transition, no matter how much it is curved and hole doped, while the quantum tunneling can be safely neglected because it is significantly suppressed by the covalent bonding of hydrogen with the graphitic lattice.


Subject(s)
Graphite/chemistry , Hydrogen/chemistry , Physics/methods , Adsorption , Algorithms , Diffusion , Models, Statistical , Molecular Conformation , Nanotechnology/methods , Quantum Theory , Thermodynamics
18.
J Chem Phys ; 135(6): 064705, 2011 Aug 14.
Article in English | MEDLINE | ID: mdl-21842947

ABSTRACT

The thermodynamic, kinetic, and magnetic properties of the hydrogen monomer on doped graphene layers were studied by ab initio simulations. Electron doping heightens the diffusion potential barrier, while hole doping lowers it. However, both kinds of dopings heighten the desorption potential barrier. The underlying mechanism was revealed by investigating the effect of charge doping on the bond strength of graphene and on the electron transfer and the coulomb interaction between the hydrogen monomer and graphene. The kinetic properties of H and D monomers on doped graphene layers during both the annealing process (annealing time t(0) = 300 s) and the constant-rate heating process (heating rate α = 1.0 K/s) were simulated. Macroscopic diffusion of hydrogen monomers on graphene can be achieved when the doping-hole density reaches 5.0 × 10(13) cm(-2). Both electron and hole dopings linearly reduce the total magnetic moment and exchange splitting, which was explained by a simple exchange model. The laws found in this work had been generalized to explain many phenomena reported in literature. This study can further enhance the understanding of the interaction between hydrogen and graphene and was expected to be helpful in the design of hydrogenated-graphene-based devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...