Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(19): 13519-13526, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38701368

ABSTRACT

High-index facet nanoparticles with structurally complex shapes, such as tetrahexahedron (THH) and hexoctahedron (HOH), represent a class of materials that are important for catalysis, and the study of them provides a fundamental understanding of the relationship between surface structures and catalytic properties. However, the high surface energies render them thermodynamically unfavorable compared to low-index facets, thereby making their syntheses challenging. Herein, we report a method to control the shape of high-index facet Cu nanoparticles (either THH with {210} facets or HOH with {421} facets) by tuning the facet surface energy with trace amounts of Te atoms. Density functional theory (DFT) calculations reveal that the density of Te atoms on Cu nanoparticles can change the relative stability of the high-index facets associated with either the THH or HOH structures. By controlling the annealing conditions and the rate of Te dealloying from CuTe nanoparticles, the surface density of Te atoms can be deliberately adjusted, which can be used to force the formation of either THH (higher surface Te density) or HOH (lower surface Te density) nanoparticles.

2.
Nat Commun ; 14(1): 3790, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37355759

ABSTRACT

Nanoparticles with high-index facets are intriguing because such facets can lend the structure useful functionality, including enhanced catalytic performance and wide-ranging optical tunability. Ligand-free solid-state syntheses of high index-facet nanoparticles, through an alloying-dealloying process with foreign volatile metals, are attractive owing to their materials generality and high yields. However, the role of foreign atoms in stabilizing the high-index facets and the dynamic nature of the transformation including the coarsening and facet regulation process are still poorly understood. Herein, the transformation of Pt salts to spherical seeds and then to tetrahexahedra, is studied in situ via gas-cell transmission electron microscopy. The dynamic behaviors of the alloying and dealloying process, which involves the coarsening of nanoparticles and consequent facet regulation stage are captured in the real time with a nanoscale spatial resolution. Based on additional direct evidence obtained using atom probe tomography and density functional theory calculations, the underlying mechanisms of the alloying-dealloying process are uncovered, which will facilitate broader explorations of high-index facet nanoparticle synthesis.


Subject(s)
Alloys , Metal Nanoparticles , Alloys/chemistry , Salts , Metal Nanoparticles/chemistry , Physical Phenomena , Catalysis
3.
ACS Nano ; 17(5): 4642-4649, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36800560

ABSTRACT

Hollow metal chalcogenide nanoparticles are widely applicable in environmental and energy-related processes. Herein, we synthesized such particles with large compositional and morphological diversity by combining scanning probe block copolymer lithography with a Kirkendall effect-based sulfidation process. We explored the influence of temperature-dependent diffusion kinetics, elemental composition and miscibility, and phase boundaries on the resulting particle morphologies. Specifically, CoNi alloys form single-shell sulfides for the synthetic conditions explored because Co and Ni exhibit similar diffusion rates, while CuNi alloys form sulfides with various types of morphologies (yolk-shell, double-shell, and single-shell) because Cu and Ni have different diffusion rates. In contrast, Co-Cu heterodimers form hollow heterostructured sulfides with varying void numbers and locations depending on synthesis temperature and phase boundary. At higher temperatures, the increased miscibility of CoS2 and CuS makes it energetically favorable for the heterostructure to adopt a single alloy shell morphology, which is rationalized using density functional theory-based calculations.

4.
Org Lett ; 24(34): 6346-6350, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36005451

ABSTRACT

Disclosed herein is an efficient strategy for the synthesis of 2,4,5-trisubstituted pyridines via CuI/NBS-catalyzed formal intermolecular [2+2+2] cycloaddition of easily available primary amines and nonactivated terminal alkynes. Moreover, this given reaction features a new mode of cycloaddition with high regio- and chemoselectivity, good atom- and step-economy, broad substrate scope, and wide functional group compatibility. Further mechanism studies indicate that this transformation starts with oxidative alkynylation of the amine to form a propargylamine intermediate, followed by radical addition to the alkyne and intramolecular cycloaddition, delivering the pharmacologically interesting multisubstituted pyridines.

5.
J Org Chem ; 87(7): 4998-5004, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35316042

ABSTRACT

A hydroamination of unactivated alkynes and lithium bis(fluorosulfonyl)imide (LiN(SO2F)2) is described under mild conditions, affording a single regioisomer of the sulfonyl fluorides. This method features broad functional group compatibility and delivers the target vinyl fluorosulfonimides in good to excellent yields. Moreover, gram-scale hydroamination of terminal and internal alkynes is achieved. Further transformations exploiting the reactivity of the vinyl fluorosulfonimide are subsequently developed for the synthesis of fluorosulfates and diphenyl sulfate.

6.
J Am Chem Soc ; 144(11): 4792-4798, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35258289

ABSTRACT

We use scanning probe block copolymer lithography in a two-step sequential manner to explore the deposition of secondary metals on nanoparticle seeds. When single element nanoparticles (Au, Ag, Cu, Co, or Ni) were used as seeds, both heterogeneous and homogeneous growth occurred, as rationalized using the thermodynamic concepts of bond strength and lattice mismatch. Specifically, heterogeneous growth occurs when the heterobond strength between the seed and growth atoms is stronger than the homobond strength between the growth atoms. Moreover, the resulting nanoparticle structure depends on the degree of lattice mismatch between the seed and growth metals. Specifically, a large lattice mismatch (e.g., 13.82% for Au and Ni) typically resulted in heterodimers, whereas a small lattice mismatch (e.g., 0.19% for Au and Ag) resulted in core-shell structures. Interestingly, when heterodimer nanoparticles were used as seeds, the secondary metals deposited asymmetrically on one side of the seed. By programming the deposition conditions of Ag and Cu on AuNi heterodimer seeds, two distinct nanostructures were synthesized with (1) Ag and Cu on the Au domain and (2) Ag on the Au domain and Cu on the Ni domain, illustrating how this technique can be used to predictively synthesize structurally complex, multimetallic nanostructures.


Subject(s)
Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Polymers/chemistry , Silver/chemistry
7.
J Org Chem ; 86(23): 16940-16947, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34726412

ABSTRACT

Carboxylic acids are widely found in natural products and bioactive molecules and have served as raw material compounds in industry. We now report the first example of copper(I)-catalyzed carboxyl transfer annulation of propiolic acids with amines, thereby chemodivergently constructing the oxazolidine-2-ones. In this reaction, two kinds of key propargyamine intermediates were formed through sequential CuI/NBS-catalyzed oxidative deamination/decarboxylative alkynylation or CuI-catalyzed decarboxylative hydroamination/alkynylation. The advantages of this decarboxylative coupling/carboxylative cyclization are showcased in the atom economy, chemical specificity, and functional group tolerance.


Subject(s)
Amines , Oxazolidinones , Catalysis , Cyclization , Molecular Structure
8.
Proc Natl Acad Sci U S A ; 118(26)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34162710

ABSTRACT

In the context of metal particle catalysts, composition, shape, exposed facets, crystal structure, and atom distribution dictate activity. While techniques have been developed to control each of these parameters, there is no general method that allows one to optimize all parameters in the context of polyelemental systems. Herein, by combining a solid-state, Bi-influenced, high-index facet shape regulation strategy with thermal annealing, we achieve control over crystal structure and atom distribution on the exposed high-index facets, resulting in an unprecedentedly diverse library of chemically disordered and ordered multimetallic (Pt, Co, Ni, Cu, Fe, and Mn) tetrahexahedral (THH) nanoparticles. Density functional theory calculations show that surface Bi modification stabilizes the {210} high-index facets of the nanoparticles, regardless of their internal atomic ordering. Moreover, we find that the ordering transition temperatures for the nanoparticles are dependent on their composition, and, in the case of Pt3Fe1 THH nanoparticles, increasing Ni substitution leads to an order-to-disorder transition at 900 °C. Finally, we have discovered that ordered intermetallic THH Pt1Co1 nanocatalysts exhibit a catalytic performance superior to disordered THH Pt1Co1 nanoparticles and commercial Pt/C catalysts toward methanol electrooxidation, highlighting the importance of crystal structure and atom distribution control on high-index facets in nanoscale catalysts.

9.
J Am Chem Soc ; 142(43): 18324-18329, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33078944

ABSTRACT

Semiconductor nanowires (NWs) capped with metal nanoparticles (NPs) show multifunctional and synergistic properties, which are important for applications in the fields of catalysis, photonics, and electronics. Conventional colloidal syntheses of this class of hybrid structures require complex sequential seeded growth, where each section requires its own set of growth conditions, and methods for preparing such wires are not universal. Here, we report a new and general method for synthesizing metal-semiconductor nanohybrids based on particle catalysts, prepared by scanning probe block copolymer lithography, and chemical vapor deposition. In this process, metallic heterodimer NPs were used as catalysts for NW growth to form semiconductor NWs capped with metallic particles (Au, Ag, Co, Ni). Interestingly, the growth processes for NWs on NPs are regioselective and controlled by the chemical composition of the metallic heterodimer used. Using a systematic experimental approach, paired with density functional theory calculations, we were able to postulate three different growth modes, one without precedent.

10.
Adv Mater ; 32(30): e2002849, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32567137

ABSTRACT

A method to introduce high-index facets into colloidally synthesized nanoparticles is used to produce compositionally uniform Pt-M (M = Ni, Co, and Cu) and Rh-M (M = Ni and Co) tetrahexahedral nanoparticles. The realization of this method allows for a systematic study of catalyst activity as a function of particle composition for various electrooxidation reactions of liquid fuels (formic acid, methanol, and ethanol). The individual contributions of their high-index facets, internal alloying of transition metals, and surface Bi modification to their electrocatalytic properties are experimentally explored, resulting in three key findings. First, the presence of high-index facets is favorable for improving the catalytic activity for all three classes of reactions studied. Second, the effect of transition metal alloying on catalytic activity differs from reaction to reaction. For methanol electrooxidation in an acid electrolyte, due to the contribution from surface Bi modification being negligible, transition metal alloying can significantly the improve overall catalytic efficiency. However, for the other studied reactions, where the surface Bi is highly favorable for improving catalytic activity, there is little influence from transition metal alloying. Finally, multimetallic tetrahexahedral particles have improved stabilities during prolonged operation compared to their monometallic counterparts due to the presence of the alloyed transition metal atoms.

11.
J Am Chem Soc ; 142(10): 4570-4575, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32096988

ABSTRACT

Multimetallic heterostructured nanoparticles with high-index facets potentially represent an important class of highly efficient catalysts. However, due to their complexity, they are often difficult to synthesize. Herein, a library of heterostructured, multimetallic (Pt, Pd, Rh, and Au) tetrahexahedral nanoparticles was synthesized through alloying/dealloying with Bi in a tube furnace at 900-1000 °C. Electron microscopy and selected area diffraction measurements show that the domains of the heterostructured nanoparticles are epitaxially aligned. Although nanoparticles formed from Au alone exhibit low-index facets, Pt and Au form PtAu heterostructured nanoparticles with high-index facets, including domains that are primarily made of Au. Furthermore, the alloying/dealloying of Bi occurs at different rates and under different conditions within the heterostructured nanoparticles. This influences the types of architectures observed en route to the final high-index state, a phenomenon clearly observable in the case of PdRhAu nanoparticles. Finally, scanning probe block copolymer lithography was used in combination with this synthetic strategy to control nanoparticle composition in the context of PtAu nanoparticles (1:4 to 4:1 ratio range) and size (15 to 45 nm range).

12.
Science ; 365(6458): 1159-1163, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31515391

ABSTRACT

Tetrahexahedral particles (~10 to ~500 nanometers) composed of platinum (Pt), palladium, rhodium, nickel, and cobalt, as well as a library of bimetallic compositions, were synthesized on silicon wafers and on catalytic supports by a ligand-free, solid-state reaction that used trace elements [antimony (Sb), bismuth (Bi), lead, or tellurium] to stabilize high-index facets. Both simulation and experiment confirmed that this method stabilized the {210} planes. A study of the PtSb system showed that the tetrahexahedron shape resulted from the evaporative removal of Sb from the initial alloy-a shape-regulating process fundamentally different from solution-phase, ligand-dependent processes. The current density at a fixed potential for the electro-oxidation of formic acid with a commercial Pt/carbon catalyst increased by a factor of 20 after transformation with Bi into tetrahexahedral particles.

13.
J Org Chem ; 84(16): 10380-10387, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31337213

ABSTRACT

A novel strategy for the direct carboxyl transfer involving a decarboxylative A3 reaction of α-keto acids, primary amines, and alkynes has been developed under a Cu(I)/Cu(II) binary catalysis system. This multicomponent reaction provides a facile and efficient approach for the production of a diverse range of 2-oxazolidinones in moderate to excellent yields through a one-pot CO2 elimination-fixation procedure. The conciseness of the "CO2 recycling" process makes this ideal synthesis superior over classical CO2 utilization.

14.
J Org Chem ; 84(16): 10501-10508, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31347364

ABSTRACT

A novel and selective cascade reaction of primary amines and alkynes for the synthesis of the corresponding secondary propargylamines is described. This protocol proceeds with a CuBr2/TBHP system through a process of oxidative deamination of primary amines to imine and alkynylation, featuring a wide scope of substrates with good functional-group tolerance and operational simplicity. Additionally, the use of two different primary amines could also work smoothly using this protocol.

15.
J Org Chem ; 84(9): 5046-5055, 2019 May 03.
Article in English | MEDLINE | ID: mdl-30901517

ABSTRACT

Herein we describe a highly chemoselective A3-coupling/annulation of amino alcohols, formaldehyde, two kinds of aldehydes and alkynes, catalyzed by copper(II). This cascade reaction, employing readily available materials, provides a new and highly effective access to chiral N-propargyl oxazolidines with good diastereoselectivity (up to >20:1). In the case of ortho-substituted aromatic aldehydes, an intriguing steric effect is observed: a bulky group exhibits a remarkably adverse effect on the diastereoselectivity for the formation of the title molecule.

16.
J Org Chem ; 83(15): 7962-7969, 2018 08 03.
Article in English | MEDLINE | ID: mdl-29873491

ABSTRACT

The development of a highly efficient and simple protocol for the direct amidation of carboxylic acids is described employing ynoates as novel coupling reagents. The transformation proceeds in good to excellent yields via in situ α-acyl enol ester intermediates formation under mild reaction conditions. This useful method has been demonstrated for a range of substrates to provide a succinct access to structurally diverse amides, including key intermediates of glibenclamide, tiapride hydrochloride, and nateglinide, and can be conducted on a mole scale.

17.
Proc Natl Acad Sci U S A ; 115(15): 3764-3769, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29572429

ABSTRACT

Scanning probe block copolymer lithography (SPBCL), in combination with density-functional theory (DFT), has been used to design and synthesize hydrogen evolution catalysts. DFT was used to calculate the hydrogen adsorption energy on a series of single-element, bimetallic, and trimetallic (Au, Pt, Ni, and Cu) substrates to provide leads that could be synthesized in the form of alloy or phase-separated particles via SPBCL. PtAuCu (18 nm, ∼1:1:1 stoichiometry) has been identified as a homogeneous alloy phase that behaves as an effective hydrogen evolution catalyst in acidic aqueous media, even when it is made in bulk form via solution phase methods. Significantly, the bulk-prepared PtAuCu/C nanocatalyst discovered via this process exhibits an activity seven times higher than that of the state-of-the-art commercial Pt/C catalyst (based upon Pt content). The advantage of using SPBCL in the discovery process is that one can uniformly make particles, each consisting of a uniform phase combination (e.g., all alloy or all phase-segregated species) at a fixed elemental ratio, an important consideration when working with polyelemental species where multiple phases may exist.

18.
J Am Chem Soc ; 139(29): 9876-9884, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28700228

ABSTRACT

Recent developments in scanning probe block copolymer lithography (SPBCL) enable the confinement of multiple metal precursors in a polymer nanoreactor and their subsequent transformation into a single multimetallic heterostructured nanoparticle through thermal annealing. However, the process by which multimetallic nanoparticles form in SPBCL-patterned nanoreactors remains unclear. Here, we utilize the combination of PEO-b-P2VP and Au, Ag, and Cu salts as a model three-component system to investigate this process. The data suggest that the formation of single-component Au, Ag, or Cu nanoparticles within polymer nanoreactors consists of two stages: (I) nucleation, growth, and coarsening of the particles to yield a single particle in each reactor; (II) continued particle growth by depletion of the remaining precursor in the reactor until the particle reaches a stable size. Also, different aggregation rates are observed for single-component particle formation (Au > Ag > Cu). This behavior is also observed for two-component systems, where nucleation sites have greater Au content than the other metals. This information can be used to trap nanoparticles with kinetic structures. High-temperature treatment ultimately facilitates the structural evolution of the kinetic particle into a particle with a fixed structure. Therefore, with multicomponent systems, a third stage that involves elemental redistribution within the particle must be part of the description of the synthetic process. This work not only provides a glimpse at the mechanism underlying multicomponent nanoparticle formation in SPBCL-generated nanoreactors but also illustrates, for the first time, the utility of SPBCL as a platform for controlling the architectural evolution of multimetallic nanoparticles in general.


Subject(s)
Copper/chemistry , Gold/chemistry , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Polyvinyls/chemistry , Silver/chemistry , Microscopy, Electron, Scanning Transmission , Molecular Structure , Particle Size , Polyethylene Glycols/chemical synthesis , Polyvinyls/chemical synthesis , Salts/chemistry , Surface Properties
19.
Nanoscale ; 7(48): 20614-24, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26592423

ABSTRACT

Despite the recent advancements in Li-O(2) (or Li-air) batteries, great challenges still remain to realize high-rate, long-term cycling. In this work, a binder-free, nanostructured RuO(2)/MnO(2) catalytic cathode was designed to realize the operation of Li-O(2) batteries at high rates. At a current density as high as 3200 mA g(-1) (or ∼1.3 mA cm(-2)), the RuO(2)/MnO(2) catalyzed Li-O(2) batteries with LiI can sustain stable cycling of 170 and 800 times at limited capacities of 1000 and 500 mA h g(-1), respectively, with low charge cutoff potentials of ∼4.0 and <3.8 V, respectively. The underlying mechanism of the high catalytic performance of MnO(2)/RuO(2) was also clarified in this work. It was found that with the catalytic effect of RuO(2), Li(2)O(2) can crystallize into a thin-sheet form and realize a conformal growth on sheet-like δ-MnO(2) at a current density up to 3200 mA g(-1), constructing a sheet-on-sheet structure. This crystallization behavior of Li(2)O(2) not only defers the electrode passivation upon discharge but also renders easy decomposition of Li(2)O(2) upon charge, leading to low polarizations and reduced side reactions. This work provides a unique design of catalytic cathodes capable of controlling Li(2)O(2) growth and sheds light on the design of high-rate, long-life Li-O(2) batteries with potential applications in electric vehicles.

20.
ACS Appl Mater Interfaces ; 7(43): 23876-84, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26466174

ABSTRACT

Lithium-air (Li-air) battery works essentially based on the interfacial reaction of 2Li + O2 ↔ Li2O2 on the catalyst/oxygen-gas/electrolyte triphase interface. Operation of Li-air batteries in ambient air still remains a great challenge despite the recent development, because some side reactions related to moisture (H2O) and carbon dioxide (CO2) will occur on the interface with the formation of some inert byproducts on the surface of the catalyst. In this work, we investigated the effect of H2O and CO2 on the electrochemical performance of Li-air batteries to evaluate the practical operation of the batteries in ambient air. The use of a highly efficient gold/δ-manganese-dioxide (Au/δ-MnO2) catalyst helps to understand the intrinsic mechanism of the effect. We found that H2O has a more detrimental influence than CO2 on the battery performance when operated in ambient air. The battery operated in simulated dry air can sustain a stable cycling up to 200 cycles at 400 mA g(-1) with a relatively low polarization, which is comparable with that operated in pure O2. This work provides a possible method to operate Li-air batteries in ambient air by using optimized catalytic electrodes with a protective layer, for example a hydrophobic membrane.

SELECTION OF CITATIONS
SEARCH DETAIL
...