Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(3): e2316542121, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38198524

ABSTRACT

In developing Xenopus tadpoles, the optic tectum begins to receive patterned visual input while visuomotor circuits are still undergoing neurogenesis and circuit assembly. This visual input regulates neural progenitor cell fate decisions such that maintaining tadpoles in the dark increases proliferation, expanding the progenitor pool, while visual stimulation promotes neuronal differentiation. To identify regulators of activity-dependent neural progenitor cell fate, we profiled the transcriptomes of proliferating neural progenitor cells and newly differentiated neurons using RNA-Seq. We used advanced bioinformatic analysis of 1,130 differentially expressed transcripts to identify six differentially regulated transcriptional regulators, including Breast Cancer 1 (BRCA1) and the ETS-family transcription factor, ELK-1, which are predicted to regulate the majority of the other differentially expressed transcripts. BRCA1 is known for its role in cancers, but relatively little is known about its potential role in regulating neural progenitor cell fate. ELK-1 is a multifunctional transcription factor which regulates immediate early gene expression. We investigated the potential functions of BRCA1 and ELK-1 in activity-regulated neurogenesis in the tadpole visual system using in vivo time-lapse imaging to monitor the fate of GFP-expressing SOX2+ neural progenitor cells in the optic tectum. Our longitudinal in vivo imaging analysis showed that knockdown of either BRCA1 or ELK-1 altered the fates of neural progenitor cells and furthermore that the effects of visual experience on neurogenesis depend on BRCA1 and ELK-1 expression. These studies provide insight into the potential mechanisms by which neural activity affects neural progenitor cell fate.


Subject(s)
Neural Stem Cells , Superior Colliculi , Animals , Genes, BRCA1 , Neurons , Proto-Oncogene Proteins c-ets , Xenopus laevis/genetics , ets-Domain Protein Elk-1 , BRCA1 Protein
2.
G3 (Bethesda) ; 12(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34751375

ABSTRACT

Amphibian metamorphosis is a transitional period that involves significant changes in the cell-type populations and biological processes occurring in the brain. Analysis of gene expression dynamics during this process may provide insight into the molecular events underlying these changes. We conducted differential gene expression analyses of the developing Xenopus laevis tadpole brain during this period in two ways: first, over stages of the development in the midbrain and, second, across regions of the brain at a single developmental stage. We found that genes pertaining to positive regulation of neural progenitor cell proliferation as well as known progenitor cell markers were upregulated in the midbrain prior to metamorphic climax; concurrently, expression of cell cycle timing regulators decreased across this period, supporting the notion that cell cycle lengthening contributes to a decrease in proliferation by the end of metamorphosis. We also found that at the start of metamorphosis, neural progenitor populations appeared to be similar across the fore-, mid-, and hindbrain regions. Genes pertaining to negative regulation of differentiation were upregulated in the spinal cord compared to the rest of the brain, however, suggesting that different programs may regulate neurogenesis there. Finally, we found that regulation of biological processes like cell fate commitment and synaptic signaling follow similar trajectories in the brain across early tadpole metamorphosis and mid- to late-embryonic mouse development. By comparing expression across both temporal and spatial conditions, we have been able to illuminate cell-type and biological pathway dynamics in the brain during metamorphosis.


Subject(s)
Gene Expression Regulation, Developmental , Transcriptome , Animals , Brain/metabolism , Larva/genetics , Larva/metabolism , Metamorphosis, Biological/genetics , Mice , Xenopus laevis/genetics , Xenopus laevis/metabolism
3.
Elife ; 102021 07 20.
Article in English | MEDLINE | ID: mdl-34282726

ABSTRACT

Matrix metalloproteinase-9 (MMP-9) is a secreted endopeptidase targeting extracellular matrix proteins, creating permissive environments for neuronal development and plasticity. Developmental dysregulation of MMP-9 may also lead to neurodevelopmental disorders (ND). Here, we test the hypothesis that chronically elevated MMP-9 activity during early neurodevelopment is responsible for neural circuit hyperconnectivity observed in Xenopus tadpoles after early exposure to valproic acid (VPA), a known teratogen associated with ND in humans. In Xenopus tadpoles, VPA exposure results in excess local synaptic connectivity, disrupted social behavior and increased seizure susceptibility. We found that overexpressing MMP-9 in the brain copies effects of VPA on synaptic connectivity, and blocking MMP-9 activity pharmacologically or genetically reverses effects of VPA on physiology and behavior. We further show that during normal neurodevelopment MMP-9 levels are tightly regulated by neuronal activity and required for structural plasticity. These studies show a critical role for MMP-9 in both normal and abnormal development.


Subject(s)
Matrix Metalloproteinase 9/metabolism , Neurodevelopmental Disorders/metabolism , Neurogenesis/physiology , Xenopus laevis/metabolism , Animals , Humans , Matrix Metalloproteinase 9/genetics , Nervous System , Neurodevelopmental Disorders/genetics , Neurogenesis/genetics , Neurons , Seizures
4.
Dev Biol ; 408(2): 269-91, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-25818835

ABSTRACT

Neurogenesis in the brain of Xenopus laevis continues throughout larval stages of development. We developed a 2-tier screen to identify candidate genes controlling neurogenesis in Xenopus optic tectum in vivo. First, microarray and NanoString analyses were used to identify candidate genes that were differentially expressed in Sox2-expressing neural progenitor cells or their neuronal progeny. Then an in vivo, time-lapse imaging-based screen was used to test whether morpholinos against 34 candidate genes altered neural progenitor cell proliferation or neuronal differentiation over 3 days in the optic tectum of intact Xenopus tadpoles. We co-electroporated antisense morpholino oligonucleotides against each of the candidate genes with a plasmid that drives GFP expression in Sox2-expressing neural progenitor cells and quantified the effects of morpholinos on neurogenesis. Of the 34 morpholinos tested, 24 altered neural progenitor cell proliferation or neuronal differentiation. The candidates which were tagged as differentially expressed and validated by the in vivo imaging screen include: actn1, arl9, eif3a, elk4, ephb1, fmr1-a, fxr1-1, fbxw7, fgf2, gstp1, hat1, hspa5, lsm6, mecp2, mmp9, and prkaca. Several of these candidates, including fgf2 and elk4, have known or proposed neurogenic functions, thereby validating our strategy to identify candidates. Genes with no previously demonstrated neurogenic functions, gstp1, hspa5 and lsm6, were identified from the morpholino experiments, suggesting that our screen successfully revealed unknown candidates. Genes that are associated with human disease, such as such as mecp2 and fmr1-a, were identified by our screen, providing the groundwork for using Xenopus as an experimental system to probe conserved disease mechanisms. Together the data identify candidate neurogenic regulatory genes and demonstrate that Xenopus is an effective experimental animal to identify and characterize genes that regulate neural progenitor cell proliferation and differentiation in vivo.


Subject(s)
Neurogenesis/genetics , Superior Colliculi/growth & development , Xenopus laevis/growth & development , Xenopus laevis/genetics , Animals , Animals, Genetically Modified , Cell Differentiation/genetics , Cell Proliferation/genetics , Computational Biology , Endoplasmic Reticulum Chaperone BiP , Gene Knockdown Techniques , Genetic Testing , Humans , Models, Animal , Models, Neurological , Morpholinos/genetics , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Oligonucleotide Array Sequence Analysis , Signal Transduction/genetics , Superior Colliculi/metabolism
5.
Neural Dev ; 7: 38, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23217150

ABSTRACT

BACKGROUND: During development, excess synapses form between the central and peripheral nervous systems that are then eliminated to achieve correct connectivity. In the peripheral auditory system, the developing type I spiral ganglion afferent fibres undergo a dramatic re-organisation, initially forming connections with both sensory inner hair cells (IHCs) and outer hair cells (OHCs). The OHC connections are then selectively eliminated, leaving sparse innervation by type II afferent fibres, whilst the type I afferent synapses with IHCs are consolidated. RESULTS: We examined the molecular makeup of the synaptic contacts formed onto the IHCs and OHCs during this period of afferent fibre remodelling. We observed that presynaptic ribbons initially form at all the afferent neurite contacts, i.e. not only at the expected developing IHC-type I fibre synapses but also at OHCs where type I fibres temporarily contact. Moreover, the transient contacts forming onto OHCs possess a broad set of pre- and postsynaptic proteins, suggesting that functional synaptic connections are formed prior to the removal of type I fibre innervation. AMPA-type glutamate receptor subunits were transiently observed at the base of the OHCs, with their downregulation occurring in parallel with the withdrawal of type I fibres, dispersal of presynaptic ribbons, and downregulation of the anchoring proteins Bassoon and Shank. Conversely, at developing type I afferent IHC synapses, the presence of pre- and postsynaptic scaffold proteins was maintained, with differential plasticity in AMPA receptor subunits observed and AMPA receptor subunit composition changing around hearing onset. CONCLUSIONS: Overall our data show a differential balance in the patterns of synaptic proteins at developing afferent IHC versus OHC synapses that likely reflect their stable versus transient fates.


Subject(s)
Cochlea , Gene Expression Regulation, Developmental/physiology , Hair Cells, Auditory/cytology , Neurites/physiology , Synapses/physiology , Age Factors , Alcohol Oxidoreductases , Animals , Animals, Newborn , Co-Repressor Proteins , Cochlea/cytology , Cochlea/embryology , Cochlea/growth & development , DNA-Binding Proteins/metabolism , Dextrans/metabolism , Embryo, Mammalian , Imaging, Three-Dimensional , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Nerve Tissue Proteins/metabolism , Phosphoproteins/metabolism , Receptors, Glutamate/metabolism , Rhodamines/metabolism
6.
Purinergic Signal ; 6(2): 231-48, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20806015

ABSTRACT

Purinergic signaling has broad physiological significance to the hearing organ, involving signal transduction via ionotropic P2X receptors and metabotropic G-protein-coupled P2Y and P1 (adenosine), alongside conversion of nucleotides and nucleosides by ecto-nucleotidases and ecto-nucleoside diphosphokinase. In addition, ATP release is modulated by acoustic overstimulation or stress and involves feedback regulation. Many of these principal elements of the purinergic signaling complex have been well characterized in the cochlea, while the characterization of P2Y receptor expression is emerging. The present study used immunohistochemistry to evaluate the expression of five P2Y receptors, P2Y(1), P2Y(2), P2Y(4), P2Y(6), and P2Y(12), during development of the rat cochlea. Commencing in the late embryonic period, the P2Y receptors studied were found in the cells lining the cochlear partition, associated with establishment of the electrochemical environment which provides the driving force for sound transduction. In addition, early postnatal P2Y(2) and P2Y(4) protein expression in the greater epithelial ridge, part of the developing hearing organ, supports the view that initiation and regulation of spontaneous activity in the hair cells prior to hearing onset is mediated by purinergic signaling. Sub-cellular compartmentalization of P2Y receptor expression in sensory hair cells, and diversity of receptor expression in the spiral ganglion neurons and their satellite cells, indicates roles for P2Y receptor-mediated Ca(2+)-signaling in sound transduction and auditory neuron excitability. Overall, the dynamics of P2Y receptor expression during development of the cochlea complement the other elements of the purinergic signaling complex and reinforce the significance of extracellular nucleotide and nucleoside signaling to hearing.

7.
Development ; 134(16): 2925-33, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17626062

ABSTRACT

The adult mammalian cochlea receives dual afferent innervation: the inner sensory hair cells are innervated exclusively by type I spiral ganglion neurons (SGN), whereas the sensory outer hair cells are innervated by type II SGN. We have characterized the spatiotemporal reorganization of the dual afferent innervation pattern as it is established in the developing mouse cochlea. This reorganization occurs during the first postnatal week just before the onset of hearing. Our data reveal three distinct phases in the development of the afferent innervation of the organ of Corti: (1) neurite growth and extension of both classes of afferents to all hair cells (E18-P0); (2) neurite refinement, with formation of the outer spiral bundles innervating outer hair cells (P0-P3); (3) neurite retraction and synaptic pruning to eliminate type I SGN innervation of outer hair cells, while retaining their innervation of inner hair cells (P3-P6). The characterization of this developmental innervation pattern was made possible by the finding that tetramethylrhodamine-conjugated dextran (TMRD) specifically labeled type I SGN. Peripherin and choline-acetyltransferase immunofluorescence confirmed the type II and efferent innervation patterns, respectively, and verified the specificity of the type I SGN neurites labeled by TMRD. These findings define the precise spatiotemporal neurite reorganization of the two afferent nerve fiber populations in the cochlea, which is crucial for auditory neurotransmission. This reorganization also establishes the cochlea as a model system for studying CNS synapse development, plasticity and elimination.


Subject(s)
Body Patterning , Cochlea/embryology , Cochlea/innervation , Neurites/physiology , Animals , Animals, Newborn , Cell Polarity , Cochlea/cytology , Mice , Mice, Inbred C57BL , Neurons, Afferent/cytology , Neurons, Afferent/physiology , Neurons, Efferent/cytology , Neurons, Efferent/physiology
8.
Development ; 134(7): 1407-17, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17329369

ABSTRACT

Type I and type II spiral ganglion neurons (SGN) innervate the inner and outer hair cells of the cochlea, respectively. This neural system is established by reorganization of promiscuous innervation of the hair cells, immediately before hearing is established. The mechanism for this synaptic reorganization is unresolved but probably includes regulation of trophic support between the hair cells and the neurons. We provide evidence that P2X receptors (ATP-gated ion channels) contribute such a mechanism in the neonatal rat cochlea. Single-cell quantitative RT-PCR identified the differential expression of two P2X receptor subunits, splice variant P2X(2)(-3) and P2X(3), in a 1:2 transcript ratio. Downregulation of this P2X(2-3/3) receptor coincided with maturation of the SGN innervation of the hair cells. When the P2X(2-3) and P2X(3) subunits were co-expressed in Xenopus oocytes, the resultant P2X receptor properties corresponded to the SGN phenotype. This included enhanced sensitivity to ATP and extended agonist action. In P4 spiral ganglion explants, activation of the P2X receptor signaling pathway by ATPgammaS or alpha,betaMeATP inhibited BDNF-induced neurite outgrowth and branching. These findings indicate that P2X receptor signaling provides a mechanism for inhibiting neurotrophin support of SGN neurites when synaptic reorganization is occurring in the cochlea.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Cochlea/innervation , Neurons/metabolism , Receptors, Purinergic P2/metabolism , Signal Transduction/physiology , Spiral Ganglion/growth & development , Animals , Animals, Newborn , Cochlea/growth & development , DNA Primers , Immunohistochemistry , Rats , Receptors, Purinergic P2X2 , Reverse Transcriptase Polymerase Chain Reaction , Xenopus
9.
Histochem Cell Biol ; 125(6): 681-92, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16341871

ABSTRACT

ATP-gated non-selective cation channels assembled from P2X(3) receptor subunits contribute to transduction and neurotransmitter signaling in peripheral sensory systems and also feature prominently in the development of the central nervous system. In this study, P2X(3) receptor expression was characterized in the mouse cochlea from embryonic day 18 (E18) using confocal immunofluorescence. From E18 to P6, spiral ganglion neuron cell bodies and peripheral neurites projecting to the inner and outer hair cells were labeled. The inner spiral plexus associated with the inner hair cell synapses had a stronger fluorescence signal than outer spiral bundle fibers which provide the afferent innervation to the outer hair cells. Labeling in the cell bodies and peripheral neurites diminished around P6, and was no longer detected after the onset of hearing (P11, P17, adult). In opposition to the axiom that P2X(3) expression is neuron-specific, inner and outer sensory hair cells were labeled in the base and mid turn region at E18, but at P3 only the outer hair cells in the most apical region of the cochlea continued to express the protein. These data suggest a role for P2X(3) receptor-mediated purinergic signaling in cochlear synaptic reorganization, and establishment of neurotransmission, which occurs just prior to the onset of hearing function.


Subject(s)
Cochlea/chemistry , Cochlea/growth & development , Hair Cells, Auditory/chemistry , Hearing , Receptors, Purinergic P2/analysis , Animals , Immunohistochemistry , Mice , Mice, Knockout , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2/physiology , Receptors, Purinergic P2X3 , Spiral Ganglion/chemistry , Spiral Ganglion/cytology
10.
J Comp Neurol ; 484(2): 133-43, 2005 Apr 04.
Article in English | MEDLINE | ID: mdl-15736235

ABSTRACT

ATP-gated ion channels assembled from P2X3 receptor (P2X3R) subunits contribute to neurotransmission and neurotrophic signaling, associated with neurite development and synaptogenesis, particularly in peripheral sensory neurons. Here, P2X3R expression was characterized in the rat cochlea from embryonic day 16 (E16) to adult (P49-56), using RT-PCR and immunohistochemistry. P2X3R mRNA was strongly expressed in the cochlea prior to birth, declined to a minimal level at P14, and was absent in adult tissue. P2X3R protein expression was confined to spiral ganglion neurons (SGN) within Rosenthal's canal of the cochlea. At E16, immunolabeling was detected in the SGN neurites, but not the distal neurite projection within the developing sensory epithelium (greater epithelial ridge). From E18, the immunolabeling was observed in the peripheral neurites innervating the inner hair cells but was reduced by P6. However, from P2-8, immunolabeling of the SGN neurites extended to include the outer spiral bundle fiber tract beneath the outer hair cells. This labeling of type II SGN afferent fiber declined after P8. By P14, all synaptic terminal immunolabeling in the organ of Corti was absent, and SGN cell body labeling was minimal. In adult cochlear tissue, P2X3R immunolabeling was not detected. Noise exposure did not induce P2X3R expression in the adult cochlea. These data indicate that ATP-gated ion channels incorporating P2X3R subunit expression are specifically targeted to the afferent terminals just prior to the onset of hearing, and likely contribute to the neurotrophic signaling which establishes functional auditory neurotransmission.


Subject(s)
Cochlea/growth & development , Cochlea/metabolism , Gene Expression Regulation, Developmental/physiology , Neurons/metabolism , Receptors, Purinergic P2/metabolism , Animals , Animals, Newborn , Cochlea/chemistry , Cochlea/embryology , Neurons/chemistry , Rats , Rats, Wistar , Receptors, Purinergic P2/biosynthesis , Receptors, Purinergic P2/physiology , Receptors, Purinergic P2X3
SELECTION OF CITATIONS
SEARCH DETAIL