Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Top Cogn Sci ; 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37052261

ABSTRACT

Artificial social intelligence (ASI) agents have great potential to aid the success of individuals, human-human teams, and human-artificial intelligence teams. To develop helpful ASI agents, we created an urban search and rescue task environment in Minecraft to evaluate ASI agents' ability to infer participants' knowledge training conditions and predict participants' next victim type to be rescued. We evaluated ASI agents' capabilities in three ways: (a) comparison to ground truth-the actual knowledge training condition and participant actions; (b) comparison among different ASI agents; and (c) comparison to a human observer criterion, whose accuracy served as a reference point. The human observers and the ASI agents used video data and timestamped event messages from the testbed, respectively, to make inferences about the same participants and topic (knowledge training condition) and the same instances of participant actions (rescue of victims). Overall, ASI agents performed better than human observers in inferring knowledge training conditions and predicting actions. Refining the human criterion can guide the design and evaluation of ASI agents for complex task environments and team composition.

2.
Front Neurogenom ; 4: 1171403, 2023.
Article in English | MEDLINE | ID: mdl-38234493

ABSTRACT

Understanding how people trust autonomous systems is crucial to achieving better performance and safety in human-autonomy teaming. Trust in automation is a rich and complex process that has given rise to numerous measures and approaches aimed at comprehending and examining it. Although researchers have been developing models for understanding the dynamics of trust in automation for several decades, these models are primarily conceptual and often involve components that are difficult to measure. Mathematical models have emerged as powerful tools for gaining insightful knowledge about the dynamic processes of trust in automation. This paper provides an overview of various mathematical modeling approaches, their limitations, feasibility, and generalizability for trust dynamics in human-automation interaction contexts. Furthermore, this study proposes a novel and dynamic approach to model trust in automation, emphasizing the importance of incorporating different timescales into measurable components. Due to the complex nature of trust in automation, it is also suggested to combine machine learning and dynamic modeling approaches, as well as incorporating physiological data.

SELECTION OF CITATIONS
SEARCH DETAIL
...