Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(14): 9871-9879, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38547318

ABSTRACT

Carbenes, recognized as potent intermediates, enable unique chemical transformations, and organoborons are pivotal in diverse chemical applications. As a hybrid of carbene and the boryl group, α-boryl carbenes are promising intermediates for the construction of organoborons; unfortunately, such carbenes are hard to access and have low structural diversity with their asymmetric transformations largely uncharted. In this research, we utilized boryl cyclopropenes as precursors for the swift synthesis of α-boryl metal carbenes, a powerful category of intermediates for chiral organoboron synthesis. These α-boryl carbenes undergo a series of highly enantioselective transfer reactions, including B-H and Si-H insertion, cyclopropanation, and cyclopropanation/Cope rearrangement, catalyzed by a singular chiral copper complex. This approach opens paths to previously unattainable but easily transformable chiral organoborons, expanding both carbene and organoboron chemistry.

2.
Angew Chem Int Ed Engl ; 63(21): e202402044, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38469657

ABSTRACT

The nuanced role of spin effects remains a critical gap in designing proficient open-shell catalysts. This study elucidates an iron-catalyzed allylic C(sp3)-H silylation/alkyne hydrosilylation reaction, in which the spin state of the open-shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C(sp3)-H silylation reaction. This chemoselectivity, governed by the spin-crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition-metal-catalyzed in situ silylation of allylic C(sp3)-H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate-assisted C-H activation mechanism, a departure from known ligand-assisted processes, offering a fresh perspective on C-H activation strategies.

3.
J Am Chem Soc ; 146(8): 5051-5055, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38373353

ABSTRACT

The construction of quaternary carbon centers via C-C coupling protocols remains challenging. The coupling of tertiary C(sp3) with secondary or tertiary C(sp3) counterparts has been hindered by pronounced steric clashes and many side reactions. Herein, we have successfully developed a type of bisphosphine ligand iron complex-catalyzed coupling reactions of tertiary alkyl halides with secondary alkyl zinc reagents and efficiently realized the coupling reaction between tertiary C(sp3) and secondary C(sp3) with high selectivity for the initial instance, which provided an efficient method for the construction of quaternary carbon centers with high steric hindrance. The combination of an iron catalyst and directing group of the substrate makes the great challenging transformation possible.

4.
Angew Chem Int Ed Engl ; 62(51): e202315473, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37934194

ABSTRACT

Stereoconvergent transformation of E/Z mixtures of olefins to products with a single steric configuration is of great practical importance but hard to achieve. Herein, we report an iron-catalyzed stereoconvergent 1,4-hydrosilylation reactions of E/Z mixtures of readily available conjugated dienes for the synthesis of Z-allylsilanes with high regioselectivity and exclusive stereoselectivity. Mechanistic studies suggest that the reactions most likely proceed through a two-electron redox mechanism. The stereoselectivity of the reactions is ultimately determined by the crowded reaction cavity of the α-diimine ligand-modified iron catalyst, which forces the conjugated diene to coordinate with the iron center in a cis conformation, which in turn results in generation of an anti-π-allyl iron intermediate. The mechanism of this stereoconvergent transformation differs from previously reported mechanisms of other related reactions involving radicals or metal-hydride species.

5.
Chem Sci ; 14(34): 9186-9190, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37655040

ABSTRACT

Chiral fluorinated reagents provide new opportunities for the discovery of drugs and functional materials because the introduction of a fluorinated group significantly alters a molecule's physicochemical properties. Chiral gem-difluoroalkyl fragments (R-CF2-C*) are key motifs in many drugs. However, the scarcity of synthetic methods and types of chiral gem-difluoroalkyl reagents limits the applications of these compounds. Herein, we report two types of chiral gem-difluoroalkyl reagents chiral gem-difluoroalkyl propargylic borons and gem-difluoroalkyl α-allenols and their synthesis by means of methods involving rhodium-catalyzed enantioselective B-H bond insertion reactions of carbenes and Lewis acid-promoted allenylation reactions. The mild, operationally simple method features a broad substrate scope and good functional group tolerance. These two types of reagents contain easily transformable boron and alkynyl or allenyl moieties and thus might facilitate rapid modular construction of chiral molecules containing chiral gem-difluoroalkyl fragments and might provide new opportunities for the discovery of chiral gem-difluoroalkyl drugs and other functional molecules.

6.
Sci Adv ; 9(37): eadj2486, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37703379

ABSTRACT

The Wittig reaction, which is one of the most effective methods for synthesizing alkenes from carbonyl compounds, generally gives thermodynamically stable E-alkenes, and synthesis of trisubstituted Z-alkenes from ketones presents notable challenges. Here, we report what we refer to as Wittig/B─H insertion reactions, which innovatively combine a Wittig reaction with carbene insertion into a B─H bond and constitute a promising method for the synthesis of thermodynamically unstable trisubstituted Z-boryl alkenes. Combined with the easy transformations of boryl group, this methodology provides efficient access to a variety of previously unavailable trisubstituted Z-alkenes and thus provides a platform for discovery of pharmaceuticals. The unique Z-selectivity of the reaction is determined by the maximum overlap of the orbitals between the B─H bond of the borane adduct and the alkylidene carbene intermediate in the transition state.

7.
Angew Chem Int Ed Engl ; 61(26): e202203343, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35437891

ABSTRACT

Herein, we report the development of a method for highly regio-, stereo-, and enantioselective B-H bond insertion reactions of α-silylcarbenes generated from 1-silylcyclopropenes in the presence of a chiral copper(I)/bisoxazoline catalyst for the construction of chiral γ,γ-disubstituted allylic gem-silylboranes, which cannot be prepared by any other known methods. This reaction is the first highly enantioselective carbene insertion reaction of α-silylcarbenes ever to be reported. The method shows general applicability for various 3,3-disubstituted silylcyclopropenes and exclusively affords E-products. The novel chiral γ,γ-disubstituted allylic gem-silylborane products are versatile allylic bimetallic reagents with high stability and have great synthetic potential, especially for the construction of complex molecules with continuous chiral centers.

8.
Angew Chem Int Ed Engl ; 60(45): 24214-24219, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34476881

ABSTRACT

The scarcity of reliable methods for synthesizing chiral gem-diarylmethine borons limits their applications. Herein, we report a method for highly enantioselective dirhodium-catalyzed B-H bond insertion reactions with diaryl diazomethanes as carbene precursors. These reactions afforded chiral gem-diarylmethine borane compounds in high yield (up to 99 % yield), high activity (turnover numbers up to 14 300), high enantioselectivity (up to 99 % ee) and showed unprecedented broad functional group tolerance. The borane compounds synthesized by this method could be efficiently transformed into diaryl methanol, diaryl methyl amine, and triaryl methane derivatives with good stereospecificity. Mechanistic studies suggested that the borane adduct coordinated to the rhodium catalyst and thus interfered with decomposition of the diazomethane, and that insertion of a rhodium carbene (generated from the diaryl diazomethane) into the B-H bond was most likely the rate-determining step.

9.
Chem Sci ; 12(48): 15790-15801, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-35024104

ABSTRACT

Transition-metal-catalysed carbene insertion reaction is a straightforward and efficient protocol for the construction of carbon-carbon or carbon-heteroatom bonds. Compared to the intensively studied and well-established "common" carbene insertion reactions, including carbene insertion into C-H, Si-H, N-H, O-H, and S-H bonds, several "uncommon" carbene insertion reactions, including carbene insertion into B-H, Sn-H, Ge-H, P-H, F-H, C-C, and M-M bonds, have been neglected for a long time. However, more and more studies on uncommon carbene insertion reactions have been disclosed recently, and clearly demonstrate the great synthetic potential of these reactions. The current perspective reviews the history and the newest advances of uncommon carbene insertion reactions, discusses their potential applications and challenges, and also presents an outlook of this promising field.

10.
J Am Chem Soc ; 142(50): 20924-20929, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33238105

ABSTRACT

We have developed a protocol for insertion of alkylidene carbenes into the B-H bonds of amine-borane adducts, enabling, for the first time, the construction of C(sp2)-B bonds by means of carbene-insertion reactions. Various acyclic and cyclic alkenyl borane-amine adducts were prepared from readily accessible starting materials in good to high yields and were subsequently subjected to a diverse array of functional group transformations. The unprecedented spiro B-N heterocycles prepared in this study have potential utility as building blocks for the synthesis of pharmaceuticals. Preliminary mechanistic studies suggest that insertion of the alkylidene carbenes into the B-H bonds of the amine-borane adducts proceeds via a concerted process involving a three-membered-ring transition state.

12.
J Am Chem Soc ; 142(23): 10557-10566, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32406233

ABSTRACT

Catalytic asymmetric reactions in which water is a substrate are rare. Enantioselective transition-metal-catalyzed insertion of carbenes into the O-H bond of water can be used to incorporate water into the stereogenic center, but the reported chiral catalysts give good results only when α-aryl-α-diazoesters are used as the carbene precursors. Herein we report the first highly enantioselective O-H bond insertion reactions between water and α-alkyl- and α-alkenyl-α-diazoesters as carbene precursors, with catalysis by a combination of achiral dirhodium complexes and chiral phosphoric acids or chiral phosphoramides. Participation of the phosphoric acids or phosphoramides in the carbene transfer reaction markedly suppressed competing side reactions, such as ß-H migration, carbene dimerization, and olefin isomerization, and thus ensured good yields of the desired products. Fine-tuning of the ester moiety facilitated enantiocontrol of the proton transfer reactions of the enol intermediates and resulted in excellent enantioselectivity. This protocol represents an efficient new method for preparation of multifunctionalized chiral α-alkyl and α-alkenyl hydroxyl esters, which readily undergo various transformations and can thus be used for the synthesis of bioactive compounds. Mechanistic studies revealed that the phosphoric acids and phosphoramides promoted highly enantioselective [1,2]- and [1,3]-proton transfer reactions of the enol intermediates. Maximization of molecular orbital overlap in the transition states of the proton transfer reactions was the original driving force to involve the proton shuttle catalysts in this process.

13.
Front Microbiol ; 4: 243, 2013.
Article in English | MEDLINE | ID: mdl-23986751

ABSTRACT

The effect of plant invasion on the microorganisms of soil sediments is very important for estuary ecology. The community structures of methanogens and sulfate-reducing bacteria (SRB) as a function of Spartina alterniflora invasion in Phragmites australis-vegetated sediments of the Dongtan wetland in the Yangtze River estuary, China, were investigated using 454 pyrosequencing and quantitative real-time PCR (qPCR) of the methyl coenzyme M reductase A (mcrA) and dissimilatory sulfite-reductase (dsrB) genes. Sediment samples were collected from two replicate locations, and each location included three sampling stands each covered by monocultures of P. australis, S. alterniflora and both plants (transition stands), respectively. qPCR analysis revealed higher copy numbers of mcrA genes in sediments from S. alterniflora stands than P. australis stands (5- and 7.5-fold more in the spring and summer, respectively), which is consistent with the higher methane flux rates measured in the S. alterniflora stands (up to 8.01 ± 5.61 mg m(-2) h(-1)). Similar trends were observed for SRB, and they were up to two orders of magnitude higher than the methanogens. Diversity indices indicated a lower diversity of methanogens in the S. alterniflora stands than the P. australis stands. In contrast, insignificant variations were observed in the diversity of SRB with the invasion. Although Methanomicrobiales and Methanococcales, the hydrogenotrophic methanogens, dominated in the salt marsh, Methanomicrobiales displayed a slight increase with the invasion and growth of S. alterniflora, whereas the later responded differently. Methanosarcina, the metabolically diverse methanogens, did not vary with the invasion of, but Methanosaeta, the exclusive acetate utilizers, appeared to increase with S. alterniflora invasion. In SRB, sequences closely related to the families Desulfobacteraceae and Desulfobulbaceae dominated in the salt marsh, although they displayed minimal changes with the S. alterniflora invasion. Approximately 11.3 ± 5.1% of the dsrB gene sequences formed a novel cluster that was reduced upon the invasion. The results showed that in the sediments of tidal salt marsh where S. alterniflora displaced P. australis, the abundances of methanogens and SRB increased, but the community composition of methanogens appeared to be influenced more than did the SRB.

SELECTION OF CITATIONS
SEARCH DETAIL
...