Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Medicine (Baltimore) ; 95(35): e4742, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27583919

ABSTRACT

BACKGROUND: The CYP19A1 enzyme (aromatase) encoded by the cytochrome P450 (CYP) 19A1 gene influences the final step in the biosynthesis of estrogen, which has been associated with Alzheimer disease (AD). It is possible that genetic polymorphisms in CYP19A1 could influence the risk of AD by altering the expression of CYP19A1. The ε4 allele of the apolipoprotein E (APOE) gene, which is the most significant known genetic risk factor for AD, may mask the effects of other loci. METHODS: To assess the potential association of CYP19A1 gene polymorphisms with the risk of AD, we conducted a case-control study in a Chinese Han population by recruiting 463 cases, including 207 patients diagnosed with AD and 256 healthy people matched for sex and age. RESULTS: In APOE ε4 carriers, the distributions of the G allele and the AG + GG genotype of CYP19A1 rs3751592 in patients differed significantly (P < 0.05) from those in healthy people. However, no difference was observed in the distribution of CYP19A1 rs1065778 between the patient and control populations, regardless of their APOE ε4 status. CONCLUSION: The results demonstrated that the rs3751592 A/G polymorphism of the CYP19A1 gene was associated with the incidence of AD in a Chinese Han population, which suggests that CYP19A1 rs3751592 is a predisposing genetic factor for AD.


Subject(s)
Alzheimer Disease/genetics , Aromatase/genetics , Asian People/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Aged, 80 and over , Apolipoprotein E4/genetics , Case-Control Studies , Female , Humans , Male
2.
Neurosci Lett ; 618: 77-82, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-26940238

ABSTRACT

The CYP17A1 gene encodes cytochrome P450c17α, an enzyme that catalyzes the formation of sex hormones, which have been linked to the pathogenesis of Alzheimer's disease (AD). An association between the CYP17A1 rs743572 single nucleotide polymorphism (SNP) and AD has been reported; however, the findings are controversial. In the present study, we investigated the association between rs743572 and another SNP, rs3824755, and AD risk in a Chinese Han population (n=207 patients and 239 controls), and their interaction with the apolipoprotein E (APOE) e4 allele. We found that the C allele and GC+CC genotypes of rs3824755 conferred protection against AD only in APOE e4 carriers. Both rs3824755 and rs743572 polymorphisms showed interactions with APOE e4. The C allele and GC+CC genotypes of rs3824755 acted as protective factors that decreased the risk of APOE e4 in AD. The CYP17A1 rs743572G allele and AG+GG genotypes were found to be potential risk factors that act synergetically with APOE e4. Moreover, the CA and GG haplotypes were protective and conferred a slight risk, respectively, in APOE e4 carriers. These results indicate that CYP17A1 rs3824755 and rs743572 are associated with AD in the Chinese Han population and act in combination with APOE e4.


Subject(s)
Alzheimer Disease/genetics , Steroid 17-alpha-Hydroxylase/genetics , Aged , Aged, 80 and over , Apolipoprotein E4/genetics , Asian People , Case-Control Studies , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Linkage Disequilibrium , Male , Polymorphism, Single Nucleotide , Risk
3.
J Exp Bot ; 66(13): 3683-98, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25922484

ABSTRACT

Elicitins are elicitors that can trigger hypersensitive cell death in most Nicotiana spp., but their underlying molecular mechanism is not well understood. The gene Phytophthora capsici INF1 (PcINF1) coding for an elicitin from P. capsici was characterized in this study. Transient overexpression of PcINF1 triggered cell death in pepper (Capsicum annuum L.) and was accompanied by upregulation of the hypersensitive response marker, Hypersensitive Induced Reaction gene 1 (HIR1), and the pathogenesis-related genes SAR82, DEF1, BPR1, and PO2. A putative PcINF1-interacting protein, SRC2-1, was isolated from a pepper cDNA library by yeast two-hybrid screening and was observed to target the plasma membrane. The interaction between PcINF1 and SRC2-1 was confirmed by bimolecular fluorescence complementation and co-immunoprecipitation. Simultaneous transient overexpression of SRC2-1 and PcINF1 in pepper plants triggered intensive cell death, whereas silencing of SRC2-1 by virus-induced gene silencing blocked the cell death induction of PcINF1 and increased the susceptibility of pepper plants to P. capsici infection. Additionally, membrane targeting of the PcINF1-SRC2-1 complex was required for cell death induction. The C2 domain of SRC2-1 was crucial for SRC2-1 plasma membrane targeting and the PcINF1-SRC2-1 interaction. These results suggest that SRC2-1 interacts with PcINF1 and is required in PcINF1-induced pepper immunity.


Subject(s)
Capsicum/immunology , Capsicum/microbiology , Phytophthora/metabolism , Plant Immunity , Plant Proteins/metabolism , Proteins/metabolism , Cell Death , Cell Membrane/metabolism , Cytoplasm/metabolism , Disease Susceptibility , Gene Expression Regulation, Plant , Gene Silencing , Immunoprecipitation , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Leaves/cytology , Plant Proteins/chemistry , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae/metabolism , Sequence Analysis, DNA
4.
Neurosci Lett ; 593: 56-60, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25796175

ABSTRACT

Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by progressive cognitive dysfunction and memory loss. Increasing evidence indicates that inflammation in the brain is a powerful factor in AD progression. Epoxyeicosatrienoic acids, the biologically active derivatives of arachidonic acid, synthesized by cytochrome P450 (CYP) epoxygenases, have been proven to have powerful anti-inflammatory effects. The aim of this study was to examine whether polymorphism in CYP2J2, encoding one of the most common CYP epoxygenase isoforms, is associated with late-onset AD (LOAD). This case-control study genotyped 672 representatives of the Chinese Han population, including 321 LOAD patients and 351 healthy controls matched for age and gender, for the functional rs890293 polymorphism within CYP2J2 by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The CYP2J2 rs890293 T allele and GT+TT genotype were significantly associated with an increased risk of LOAD. Further data stratification according to the presence of the apolipoprotein E (APOE) e4 allele confirmed a strong association between CYP2J2 rs890293 and LOAD, and indicated that the involvement of CYP2J2 in LOAD was independent of ApoE-ϵ4. Our study demonstrated that CYP2J2 rs890293 is a possible predisposing genetic factor for progression of LOAD.


Subject(s)
Alzheimer Disease/genetics , Cytochrome P-450 Enzyme System/genetics , Age of Onset , Aged , Aged, 80 and over , Alzheimer Disease/ethnology , Apolipoprotein E4/genetics , Asian People , Case-Control Studies , Cytochrome P-450 CYP2J2 , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Polymorphism, Genetic
5.
Plant Physiol Biochem ; 62: 70-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23201563

ABSTRACT

Ethylene-responsive factors (ERFs) play diverse roles in plant growth, developmental processes and stress responses. However, the roles and underlying mechanism of ERFs remain poorly understood, especially in non-model plants. In this study, a full length cDNA of ERF gene was isolated from the cDNA library of Chinese cabbage. According to sequence alignment, we found a highly conservative AP2/ERF domain, two nuclear localization signals, and an ERF-associated Amphiphilic Repression (EAR) motif in its C-terminal region. It belonged to VIIIa group ERFs sharing the highest sequence identity with AtERF11 in all of the ERFs in Arabidopsis and designated BrERF11. BrERF11-green fluorescence protein (GFP) transient expressed in onion epidermis cells localized to the nucleus. The transcript levels of BrERF11 were induced by exogenous salicylic acid (SA), methyl jasmonate (MeJA), ethephon (ETH), and hydrogen peroxide (H(2)O(2)). Constitutive expression of BrERF11 enhanced tolerance to Ralstonia solanacearum infection in transgenic tobacco plants, which was coupled with hypersensitive response (HR), burst of H(2)O(2) and upregulation of defense-related genes including HR marker genes, SA-, JA-dependent pathogen-related genes and ET biosynthesis associated genes and downregulation of CAT1, suggesting BrERF11 may participate in pathogen-associated molecular pattern (PAMP)- and effector-triggered immunity (PTI and ETI) mediated by SA-, JA- and ET-dependent signaling mechanisms.


Subject(s)
Brassica/genetics , Disease Resistance , Nicotiana/metabolism , Plant Diseases , Plant Proteins/biosynthesis , Plants, Genetically Modified/metabolism , Ralstonia solanacearum , Transcription Factors/biosynthesis , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology , Nicotiana/genetics , Nicotiana/microbiology , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...