Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Res ; 261: 119705, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39084505

ABSTRACT

Long-term biomonitoring of urinary metal ions is an essential tool for the epidemiological assessment of chronic exposure levels, enabling us to track changes in metal exposure over time and better understand its health implications. In this study, we evaluated the temporal trends of urinary metal ions among 1962 residents of Guangzhou, China, from 2018 to 2022. The total metal ion concentrations in the urine of the population did not change significantly between 2018 and 2019. With the onset of the COVID-19 pandemic in 2020, urinary total metal ion concentrations began to decline dramatically, reaching their lowest level in 2021. A rebound in concentrations was observed in 2022, which returned to the initial levels observed in 2018. Urine chromium and cadmium concentrations peaked in 2020, while urinary lead levels were the highest in 2021, and urinary nickel concentrations were the highest in 2022. Males consistently displayed higher urinary concentrations of lead and arsenic throughout each year of the study. Furthermore, minors consistently had higher urinary nickel levels than adults, whereas adults consistently had higher urinary cadmium concentrations than minors. Cluster analyses were conducted annually on urinary metal ions to examine the differences in their distribution and to evaluate changes in metal exposure patterns over time. The Monte Carlo simulations indicate that the whole population exhibits a high non-carcinogenic risk from arsenic exposure and significant carcinogenic risks associated with exposure to nickel, arsenic, chromium, and cadmium. The next two years were predicted by a gray prediction model, and the results are tested using mean absolute percentage error which demonstrating high accuracy.


Subject(s)
COVID-19 , Humans , China/epidemiology , COVID-19/epidemiology , Male , Adult , Female , Child , Young Adult , Adolescent , Middle Aged , Environmental Exposure/analysis , Metals/urine , SARS-CoV-2 , Child, Preschool , Risk Assessment , Cadmium/urine , Biological Monitoring
2.
Urol J ; 19(4): 289-299, 2022 May 22.
Article in English | MEDLINE | ID: mdl-35598038

ABSTRACT

PURPOSE: Targeted ferroptosis is a reliable therapy to inhibit tumor growth and enhance immunotherapy. This study generated a novel prognostic risk signature based on ferroptosis-related genes (FRGs), and explored the ability in clinic for clear cell renal cell carcinoma (ccRCC). MATERIALS AND METHODS: The expression profile of mRNA and FRGs for ccRCC patients were exacted from The Cancer Genome Atlas (TCGA) database. A ferroptosis-related prognostic risk signature was constructed based on univariable and multivariable Cox-regression analysis. Kaplan-Meier (KM) survival curves and receiver operating characteristic (ROC) curves were performed to access prognostic value of riskscore. A nomogram integrating riskscore and clinical features was established to predict overall survival (OS). Based on differentially expressed genes between high- and low-OS groups with 5-year OS, function enrichment analyses and single-sample gene set enrichment analysis (ssGSEA) were investigated to immune status. RESULTS: A 9-FRGs prognostic risk signature was constructed based on 37 differentially expressed FRGs. ROC and KM curves showed that riskscore has excellent reliability and predictive ability; Cox regression disclosed the riskscore as an independent prognosis for ccRCC patients. Then, the C-index and calibration curve demonstrated the good performance of nomogram in training and validation cohort, and its predictive ability better than other features. Immune-related biological processes were enriched by function enrichment analysis, and the immune-related cells and functions were differential by ssGSEA between high- and low-OS groups. CONCLUSION: Our study identified and verified a novel 9-FRGs prognostic signature and nomogram to predict OS, providing a novel sight to explore targeted therapy of ferroptosis for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Ferroptosis , Kidney Neoplasms , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Ferroptosis/genetics , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Prognosis , RNA, Messenger , Reproducibility of Results
3.
Environ Pollut ; 290: 117975, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34416499

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are compounds with two or more benzene rings whose hydroxylated metabolites (OH-PAHs) are excreted in urine. Human PAH exposure is therefore commonly estimated based on urinary OH-PAH concentrations. However, no study has compared PAH exposure estimates based on urinary OH-PAHs to measurements of PAH levels in blood samples. Estimates of PAH exposure based solely on urinary OH-PAHs may thus be subject to substantial error. To test this hypothesis, paired measurements of parent PAHs in serum and OH-PAHs in urine samples from 480 participants in Guangzhou, a typical developed city in southern China, were used to investigate differences in the estimates of human PAH exposure obtained by sampling different biological matrices. The median PAH concentration in serum was 4.05 ng mL-1, which was lower than that of OH-PAHs in urine (8.33 ng mL-1). However, serum pyrene levels were significantly higher than urinary levels of its metabolite 1-hydroxypyrene. Concentrations of parent PAHs in serum were not significantly correlated with those of their metabolites in urine with the exception of phenanthrene, which exhibited a significant negative correlation. Over 28% of the participants had carcinogenic risk values above the acceptable cancer risk level of 10-6. Overall, estimated human exposure and health risks based on urinary 1-hydroxypyrene levels were only 13.6% of those based on serum pyrene measurements, indicating that estimates based solely on urine sampling may substantially understate health risks due to PAH exposure.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Biomarkers , Carcinogens , China , Cities , Humans , Polycyclic Aromatic Hydrocarbons/analysis
SELECTION OF CITATIONS
SEARCH DETAIL