Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-37913699

ABSTRACT

Color polymorphisms in molluscan shells play an important economic in the aquaculture industry. Among bivalves, shell color diversity can reflect properties such as growth rate and tolerance. In pearl oysters, the nacre color of the donor is closely related to the pearl color. Numerous genes and proteins involved in nacre color formation have been identified within the exosomes of the mantle. In this study, we analyzed the carotenoids present in the mantle of gold- and silver-lipped pearl oysters, identifying capsanthin and xanthophyll as crucial pigments contributing to coloration. Transcriptome analysis of the mantle revealed several differentially expressed genes (DEGs) involved in color formation, including ferric-chelate reductase, mantle genes, and larval shell matrix proteins. We also isolated and identified exosomes from the mantles of both gold- and silver-lipped strains of the pearl oyster Pinctada fucata martensii, revealing the extracellular transition mechanism of coloration-related proteins. From these exosomes, we obtained a total of 1223 proteins, with 126 differentially expressed proteins (DEPs) identified. These proteins include those associated with carotenoid metabolism and Fe(III) metabolism, such as apolipoproteins, scavenger receptor proteins, ß,ß-carotene-15,15'-dioxygenase, ferritin, and ferritin heavy chains. This study may provide a new perspective on the nacre color formation process and the pathways involved in deposition within the pearl oyster P. f. martensii.


Subject(s)
Exosomes , Nacre , Pinctada , Animals , Transcriptome , Proteome/metabolism , Pinctada/genetics , Nacre/metabolism , Exosomes/genetics , Exosomes/metabolism , Ferric Compounds/metabolism , Silver/metabolism , Ferritins/genetics , Ferritins/metabolism
2.
Mol Ecol Resour ; 23(3): 680-693, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36458936

ABSTRACT

Biomineralization-controlled exo-/endoskeleton growth contributes to body growth and body size diversity. Molluscan shells undergo ectopic biomineralization to form the exoskeleton and biocalcified "pearl" involved in invading defence. Notably, exo-/endoskeletons have a common ancestral origin, but their regulation and body growth are largely unknown. This study employed the pearl oyster, Pinctada fucata marntensii, a widely used experimental model for biomineralization in invertebrates, to perform whole-genome resequencing of 878 individuals from wild and breeding populations. This study characterized the genetic architecture of biomineralization-controlled growth and ectopic biomineralization. The insulin-like growth factor (IGF) endocrine signal interacted with ancient single-copy transcription factors to form the regulatory network. Moreover, the "cross-phylum" regulation of key long noncoding RNA (lncRNA) in bivalves and mammals indicated the conserved genetic and epigenetic regulation in exo-/endoskeleton growth. Thyroid hormone signal and apoptosis regulation in pearl oysters affected ectopic biomineralization in pearl oyster. These findings provide insights into the mechanism underlying the evolution and regulation of biomineralization in exo-/endoskeleton animals and ectopic biomineralization.


Subject(s)
Biomineralization , Pinctada , Animals , Pinctada/genetics , Pinctada/metabolism , Genome-Wide Association Study , Epigenesis, Genetic , Genome , Mammals/genetics
3.
Article in English | MEDLINE | ID: mdl-35644102

ABSTRACT

MicroRNAs (miRNAs) can efficiently regulate gene expression at intracellular and extracellular levels. Plant-derived miRNAs are highly enriched in animal haemolymph and regulate mammalian gene expression. However, evidence for food-derived miRNAs in Mollusca species is lacking. In this study, we fed the microalga Nannochloropsis oculata to the pearl oyster Pinctada fucata martensii and detected dietary miRNAs in exosomes isolated from the haemolymph by RNA-seq. In total, 273 endogenous miRNAs were identified in all biological replicates. We identified 23 microalgae-derived miRNAs in the exosomes of pearl oyster haemolymph. Most microalgae-derived miRNAs showed high expression levels in both exosomes and microalgae and exhibited apparent variation among individuals. These food-derived miRNAs were predicted to participate in endocytosis, apoptosis, signal transduction, energy metabolism, and biomineralization by targeting multiple genes. These findings demonstrated the cross-kingdom transport of miRNAs from microalgae to bivalves and provide insights into novel nutrient transmission through the food chain.


Subject(s)
Exosomes , MicroRNAs , Microalgae , Pinctada , Animals , Exosomes/genetics , Food Chain , Mammals/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Microalgae/genetics , Nutrients , Pinctada/genetics
4.
J Steroid Biochem Mol Biol ; 217: 106045, 2022 03.
Article in English | MEDLINE | ID: mdl-34915168

ABSTRACT

Ecdysone exists in arthropods, Mollusca and other invertebrates and plays vital roles in exoskeleton formation of Ecdysozoa. However, little is known about its functions in bivalve species. Herein, we identified ecdysone from the serum of pearl oyster Pinctada fucata martensii and obtained the coding sequence of ecdysone receptor (PmEcR) and homologue of its heterodimer protein retinoid X receptor (PmRXR). The deduced amino acid sequences of PmEcR and PmRXR contained a DNA-binding and ligand-binding domain and were very similar to the orthologs of other species. Moreover, PmEcR and PmRXR were located in the nuclei and cytoplasm of HEK-293T cells. PmEcR and PmRXR were highly expressed in early embryos and biomineralized mantle tissue. Moreover, the serum concentration of ecdysone significantly increased at 2, 4, 6, and 8 h post-shell notching. The expression of PmEcR in the mantle tissue was significantly induced at the corresponding time points, while that of PmRXR was significantly induced at 6 h. Ecdysone stimulation remarkably induced the expression of growth factors (BMP2 and BMP7), transcription factors (PmRunt and AP-1), and shell matrix protein genes (chitinase, lysine-rich matrix protein (KRMP), TYR2, and PmCOLVI), which indicated that ecdysone signaling plays important roles in shell repair. However, yeast two-hybrid assay and bimolecular fluorescence complementation showed that PmEcR and PmRXR did not form dimers, suggesting the different molecular interactions of EcR in bivalves. These findings provide insights into the function of ecdysone and its regulation pathway in bivalve species.


Subject(s)
Pinctada , Amino Acid Sequence , Animals , Ecdysone/metabolism , Pinctada/genetics , Pinctada/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Article in English | MEDLINE | ID: mdl-31733296

ABSTRACT

Chitin participates in shell formation as the main component of an organic framework. Chitin-binding protein contains domains that can bind to chitin specifically. In this study, a novel chitin-binding protein from Pinctada fucata martensii (PmCBP) with poly (chitin-binding domain) was cloned, which contains a 5'-untranslated region (UTR) of 114 bp and 3'UTR of 116 bp, and encodes a putative protein of 2044 amino acids. The predicted PmCBP protein was structurally typical of the CBP family with 20 ChtBD2 domains. Phylogenetic and linear relation analyses showed that the ChtBD2 domain has a highly conserved structure among the three species of P. f. martensii, Crassostrea gigas, and Mizuhopecten yessoensis. qRT-PCR and in-situ hybridization analysis revealed that PmCBP was most abundant in the mantle pallium whose expression level was significantly correlated with the growth traits. After RNAi, PmCBP expression was significantly inhibited in the mantle pallium (P < 0.05) and the microstructure of nacreous layers showed a disordered growth in the experiment group. These results indicated that PmCBP may be involved in nacreous layer formation through participation in the process of binding chitin in pearl oyster P. f. martensii.


Subject(s)
Nacre , Phylogeny , Pinctada , Animals , Nacre/biosynthesis , Nacre/genetics , Pinctada/genetics , Pinctada/metabolism , Protein Domains
6.
Fish Shellfish Immunol ; 90: 109-117, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31051240

ABSTRACT

The immune response after allograft or xenograft transplantation in the pearl oyster is a major factor that cause its nucleus rejection and death. To determine the mechanism underlying the immune response after allograft and xenograft transplantations in the pearl oyster Pinctada fucata martensii, we constructed two sets of transcriptomes of hemocytes at different times (6 and 12 h; 1, 3, 6, 12, and 30 d) after allograft and xenograft transplantations, in which the xenografted mantle tissue was from Pinctada maxima. The transcriptomic analysis reveals many genes are involved in the immune response to transplantation, such as transient receptor potential cation channel (TRP), calmodulin (CaM), DNA replication-related genes, and sugar and lipid metabolism-related genes. The expression of these identified genes was higher in the host pearl oyster transplanted with xenograft than that by allograft. The histological analysis of the pearl sac also confirmed that many hemocytes were still gathered around the transplanted nucleus, and no pearl sac was formed in the host pearl oysters at 30 d after xenograft transplantation. The genomic analysis indicated that pearl oysters evolved many copies of genes, such as TRP, CaM, and GST, to sense and cope with the immune response after transplantation. "Ribosome" and "Cytosolic DNA-sensing pathway" were specifically induced in the xenograft group, whereas "Notch signaling pathway" specifically responded to the allograft transplantation. These results can improve our understanding of the mechanism underlying the immune response of pearl oysters after allograft and xenograft transplantations.


Subject(s)
Genome/immunology , Immunity, Innate/genetics , Pinctada/genetics , Pinctada/immunology , Transcriptome/immunology , Allografts/immunology , Animals , Gene Expression Profiling , Hemocytes/immunology , Heterografts/immunology , Transplantation, Heterologous/veterinary , Transplantation, Homologous/veterinary
7.
Int J Mol Sci ; 19(12)2018 Nov 22.
Article in English | MEDLINE | ID: mdl-30469474

ABSTRACT

The paired-box 3 (Pax3) is a transcription factor and it plays an important part in melanin synthesis. In this study, a new Pax3 gene was identified from Pteria penguin (Röding, 1798) (P. penguin) by RACE-PCR (rapid-amplification of cDNA ends-polymerase chain reaction) and its effect on melanin synthesis was deliberated by RNA interference (RNAi). The cDNA of PpPax3 was 2250 bp long, containing an open reading fragment of 1365 bp encoding 455 amino acids. Amino acid alignment and phylogenetic tree showed PpPax3 shared the highest (69.2%) identity with Pax3 of Mizuhopecten yessoensis. Tissue expression profile showed that PpPax3 had the highest expression in mantle, a nacre-formation related tissue. The PpPax3 silencing significantly inhibited the expression of PpPax3, PpMitf, PpTyr and PpCdk2, genes involved in Tyr-mediated melanin synthesis, but had no effect on PpCreb2 and an increase effect on PpBcl2. Furthermore, the PpPax3 knockdown obviously decreased the tyrosinase activity, the total content of eumelanin and the proportion of PDCA (pyrrole-2,3-dicarboxylic acid) in eumelanin, consistent with influence of tyrosinase (Tyr) knockdown. These data indicated that PpPax3 played an important regulating role in melanin synthesis by Tyr pathway in P. penguin.


Subject(s)
Melanins/biosynthesis , Monophenol Monooxygenase/metabolism , Ostreidae/metabolism , PAX3 Transcription Factor/metabolism , Animals , Ostreidae/genetics , PAX3 Transcription Factor/genetics
8.
Article in English | MEDLINE | ID: mdl-29981452

ABSTRACT

Keratan sulfate possesses considerable amounts of negatively charged sulfonic acid groups and participates in biomineralization. In the present study, we investigated characteristics and functions of a CHST1 gene identified from the pearl oyster Pinctada fucata martensii (PmCHST1b) which participated in the synthesis of keratan sulfate. PmCHST1b amino acid sequence carried a typical sulfotransferase-3 domain (sulfotransfer-3 domain) and belonged to membrane-associated sulfotransferases. Homologous analysis of CHST1 from different species showed the conserved motif (5' PSB motif and 3' PB motif) which interacted with 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Structure analysis of sulfotransferase domain indicted that PmCHST1b showed the conserved catalytic structure character and the relationships presented in the phylogenetic tree conformed to that of traditional taxonomy. Expression pattern of PmCHST1b in different tissues and development stages showed that PmCHST1b widely expressed in all the detected tissues and development stages and showed the highest expression level in the central zone of mantle (MC). PmCHST1b expressed highly in the trochophore, D-stage larvae and spat which corresponded to prodissoconch and dissoconch shell formation, respectively. RNA interference (RNAi) successfully inhibited expression level of PmCHST1b in MC (P<0.05), and sulfate polymer content in the extrapallial fluid significantly reduced (P<0.05). Crystallization of shell nacre became irregular. Results above indicated that PmCHST1b may affect nacre formation by participating in synthesis of keratan sulfate in extrapallial fluid. This study provided fundamental materials for further research on the role of sulfotransferases and keratan sulfate in nacre formation.


Subject(s)
Nacre/metabolism , Pinctada/enzymology , Sulfotransferases/chemistry , Sulfotransferases/metabolism , Amino Acid Sequence , Animals , Base Sequence , Keratan Sulfate/metabolism , Minerals/metabolism , Models, Molecular , Phylogeny , Pinctada/genetics , Pinctada/growth & development , Protein Domains , Sulfotransferases/genetics
9.
Biosci Biotechnol Biochem ; 82(7): 1073-1080, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29621937

ABSTRACT

Marine pearl production is directly influenced by the growth speed of Pinctada fucata martensii. However, the slow growth rate of this organism remains the main challenge in aquaculture production. Epidermal growth factor receptor (EGFR), an important receptor of tyrosine kinases in animals, plays versatile functions in development, growth and tissue regeneration. In this study, we described the characteristic and function of an EGFR gene identified from P. f. martensii (PmEGFR). PmEGFR possesses a typical EGFR structure and is expressed in all studied tissues, with the highest expression level in adductor muscle. PmEGFR expression level is significantly higher in the fast-growing group than that in the slow-growing one. Correlation analysis represents that shell height and shell weight show positive correlation with PmEGFR expression (p < 0.05), and total weight and tissue weight exhibit positive correlation with it (p < 0.01). This study indicates that PmEGFR is a valuable functional gene associated with growth traits.


Subject(s)
ErbB Receptors/metabolism , Gene Expression , Ostreidae/growth & development , Ostreidae/metabolism , Animal Shells , Animals , Aquaculture , Cloning, Molecular , DNA, Complementary/genetics , ErbB Receptors/genetics , High-Throughput Nucleotide Sequencing , Muscles/metabolism , Organ Size , Ostreidae/genetics , Phylogeny , Regeneration
10.
Gigascience ; 6(8): 1-12, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28873964

ABSTRACT

Nacre, the iridescent material found in pearls and shells of molluscs, is formed through an extraordinary process of matrix-assisted biomineralization. Despite recent advances, many aspects of the biomineralization process and its evolutionary origin remain unknown. The pearl oyster Pinctada fucata martensii is a well-known master of biomineralization, but the molecular mechanisms that underlie its production of shells and pearls are not fully understood. We sequenced the highly polymorphic genome of the pearl oyster and conducted multi-omic and biochemical studies to probe nacre formation. We identified a large set of novel proteins participating in matrix-framework formation, many in expanded families, including components similar to that found in vertebrate bones such as collagen-related VWA-containing proteins, chondroitin sulfotransferases, and regulatory elements. Considering that there are only collagen-based matrices in vertebrate bones and chitin-based matrices in most invertebrate skeletons, the presence of both chitin and elements of collagen-based matrices in nacre suggests that elements of chitin- and collagen-based matrices have deep roots and might be part of an ancient biomineralizing matrix. Our results expand the current shell matrix-framework model and provide new insights into the evolution of diverse biomineralization systems.


Subject(s)
Calcification, Physiologic/genetics , Genome , Genomics , Pinctada/physiology , Animals , Gene Regulatory Networks , Genomics/methods , High-Throughput Nucleotide Sequencing , Nacre/genetics , Nacre/metabolism , Proteomics
11.
Electron. j. biotechnol ; 28: 113-119, July. 2017. tab, ilus, graf
Article in English | LILACS | ID: biblio-1015986

ABSTRACT

Background: C4ST-1 catalyzes the transfer of sulfate groups in the sulfonation of chondroitin during chondroitin sulfate synthesis. Chondroitin sulfate consists of numerous copies of negatively charged sulfonic acid groups that participate in the nucleation process of biomineralization. In the present study, we obtained two CHST11 genes (PmCHST11a and PmCHST11b) which encoded the C4ST-1 and explored the functions of these genes in the synthesis of chondroitin sulfate and in the formation of the nacreous layer of shells. Results: Both PmCHST11a and PmCHST11b had a sulfotransferase-2 domain, a signal peptide and a transmembrane domain. These properties indicated that these genes localize in the Golgi apparatus. Real-time PCR revealed that both PmCHST11a and PmCHST11b were highly expressed in the central zone of the mantle tissue. Inhibiting PmCHST11a and PmCHST11b via RNA interference significantly decreased the expression levels of these genes in the central zone of the mantle tissue and the concentration of chondroitin sulfate in extrapallial fluid. Moreover, shell nacre crystallized irregularly with a rough surface after RNA interference. Conclusions: This study indicated that PmCHST11a and PmCHST11b are involved in the nacre formation of Pinctada fucata martensii through participating in the synthesis of chondroitin sulfate.


Subject(s)
Sulfotransferases/metabolism , Pinctada , Nacre/biosynthesis , Chondroitin Sulfate Proteoglycans/biosynthesis , Sulfotransferases/genetics , Nucleic Acid Amplification Techniques/methods , RNA Interference , Real-Time Polymerase Chain Reaction , Biomineralization
12.
PLoS One ; 12(6): e0178561, 2017.
Article in English | MEDLINE | ID: mdl-28570710

ABSTRACT

Heterodimeric PEBP2/CBFs are key regulators in diverse biological processes, such as haematopoietic stem-cell generation, bone formation and cancers. In this work, we cloned runt-like transcriptional factor (designated as PmRunt) and CBF ß (designated as PmCBF) gene, which comprise the heterodimeric transcriptional factor in Pinctada martensii. PmRunt was identified with an open reading frame that encodes 545 amino acids and has typical Runt domain. Phylogenetic analysis results speculated that runt-like transcriptional factors (RDs) in vertebrates and invertebrates are separated into two branches. In molluscs, PmRunt and other RDs are clustered in one of these branches. Direct interaction between PmRunt and PmCBF was evidenced by yeast two-hybrid assay results. Gene repression by RNA interference decreased the expression level of PmRunt, and subsequent observation of the inner surface of the nacre by scanning electron microscopy demonstrated disordered growth. The luciferase activities of reporters that contain promoter regions of Collagen VI-like (PmColVI) and PmNacrein were enhanced by PmRunt. Meanwhile, Pm-miR-183 apparently inhibited the relative luciferase activity of reporters containing the 3'-UTR of PmRunt. The expression level of PmRunt was repressed after Pm-miR-183 was overexpressed in the mantle tissue. Therefore, we proposed that PmRunt could be targeted by Pm-miR-183 and regulate the transcription of PmColVI and PmNacrein by increasing their transcriptional activity, thereby governing nacre formation.


Subject(s)
Carbonic Anhydrases/metabolism , Collagen Type VI/metabolism , MicroRNAs/genetics , Proteins/chemistry , Amino Acid Sequence , Animals , Ostreidae , Sequence Homology, Amino Acid
13.
Electron. j. biotechnol ; 25: 70-74, ene. 2017. tab, graf, ilus
Article in English | LILACS | ID: biblio-1008710

ABSTRACT

Background: Pearl oyster Pinctada fucata martensii is cultured for producing round nucleated pearls. Pearl production involves a surgical operation where a mantle tissue graft from a donor oyster and a round nucleus are implanted in the gonad of a host oyster. Whether the mantle graft implanted in the gonad of a host oyster contributes to the formation of a pearl sac that secretes pearl nacre to form a pearl should be determined. In April 2012, two full-sib families were separately used as donor and host oysters for a nucleus insertion operation. The pearl sac was sampled from the host oysters at day 60 after nucleus operation. A large number of simple sequence repeat (SSR) markers were developed using Illumina HiSeq™ 2000 platform. The two full-sib families were also used to mine diagnostic SSR markers for genotyping donor oyster, host oyster, and pearl sac. Results: A total of 3168 microsatellite loci were identified in 39,078 unigenes, and 1977 SSR primers were designed by Primer 3.0. Forty-seven SSR primers were validated, and the rate of successful amplification was 72.3%. Two diagnostic SSR primers could successfully genotype pearl sac, donor oyster, and host oyster. Donor and host oysters were both homogenous, and the alleles in pearl sac were identical to those in donor and host oysters. Conclusions: The present results confirmed that the mantle graft implanted in the gonad of host oyster contributed to the formation of the pearl sac in pearl oyster P. fucata martensii.


Subject(s)
Animals , Transplantation , Microsatellite Repeats/genetics , Pinctada/genetics , Polymerase Chain Reaction , Genotyping Techniques
14.
Gene ; 591(2): 484-9, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27363668

ABSTRACT

Long non-coding RNAs (LncRNAs) are abundant in the genome of higher forms of eukaryotes and implicated in regulating the diversity of biological processes partly because they host microRNAs (miRNAs), which are repressors of target gene expression. In vertebrates, miR-133 regulates the differentiation and proliferation of cardiac and skeletal muscles. Pinctada martensii miR-133 (pm-miR-133) was identified in our previous research through Solexa deep sequencing. In the present study, the precise sequence of mature pm-miR-133 was validated through miR-RACE. Stem loop qRT-PCR analysis demonstrated that mature pm-miR-133 was constitutively expressed in the adductor muscle, gonad, hepatopancreas, mantle, foot, and gill of P. martensii. Among these tissues, the adductor muscle exhibited the highest pm-miR-133 expression. Target analysis indicated that pm-RhoA was the potential regulatory target of pm-miR-133. Bioinformatics analyses revealed that a potential LncRNA (designated as Lnc133) with a mature pm-miR-133 could generate a hairpin structure that was highly homologous to that of Lottia gigantea. Lnc133 was also highly expressed in the adductor muscle, gill, hepatopancreas, and gonad. Phylogenetic analysis further showed that the miR-133s derived from chordate and achordate were separated into two classes. Therefore, Lnc133 hosting pm-miR-133 could be involved in regulating the cell proliferation of adductor muscles by targeting pm-RhoA.


Subject(s)
Gene Expression Regulation , MicroRNAs/genetics , Pinctada/genetics , rhoA GTP-Binding Protein/genetics , Animals , MicroRNAs/chemistry , Muscle, Skeletal/physiology , Nucleic Acid Conformation , RNA, Long Noncoding , Real-Time Polymerase Chain Reaction
15.
Saudi J Biol Sci ; 23(3): 372-8, 2016 May.
Article in English | MEDLINE | ID: mdl-27081363

ABSTRACT

MicroRNAs (miRNAs) are a class of non-coding RNA molecules with presumed post-transcriptional regulatory activity in various biological processes, such as development and biomineralization. Pinctada martensii is one of the main species cultured for marine pearl production in China and Japan. In our previous research, 258 pm-miRNAs had been identified by solexa deep sequencing in P. martensii, while it is far from the number of miRNAs found in other species. In this study, based on the transcriptome database of pearl sac, we identified 30 candidate pm-miRNAs by computational prediction. Among the obtained 30 pm-miRNAs, 13 pm-miRNAs were generated from the complementary strand of protein-coding mRNAs, and 17 pm-miRNAs could not be annotated using blastx and tblastn analysis. Notably, 10 of the 30 pm-miRNAs, such as pm-miR-1b, pm-miR-205b and pm-miR-375b, were homologous with the reported pm-miRNAs, respectively. To validate the existence of the identified pm-miRNAs, eight randomly selected pm-miRNAs were tested by stem loop quantitative RT-PCR analyses using 5.8S as the internal reference gene. Target prediction between the obtained pm-miRNAs and biomineralization-related genes by microTar, miRanda and RNA22 indicated pm-miR-2386 and pm-miR-13b may be the key factors in the regulation network by regulating the formation of organic matrix or the differentiation of mineralogenic cell during shell formation. Thus, this study enriched miRNA databases of pearl oyster and provided a new way to understand biomineralization.

16.
Fish Shellfish Immunol ; 54: 40-5, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26993611

ABSTRACT

Increasing evidence demonstrated that microRNAs (miRNAs) play critical roles in innate immunity in vertebrates and invertebrates. MiR-146a/b is reported as a key regulator of the immune response through mediating Toll-like receptor and cytokine signalling. In this study, a novel miR-146a was identified and characterised from Pinctada martensii (designated as pm-miR-146a), and its roles in modulating the inflammatory response after LPS stimulation were also investigated. Pm-miR-146a ubiquitously expressed in all examined tissues, with the highest level in the mantle and lowest expression in the haemolymph. Pm-miR-146a increased at 24 h after lipoplysaccharide injection, in union with up-regulated NF-κB (P < 0.05). The over-expression of pm-miR-146a in vivo could significantly inhibit the expression of macrophage migration inhibitory factor (MIF), the potential target gene predicted by miRanda, while enforcing pm-miR-146a involved in the down-regulation of NF-κB. Thus, we propose that pm-miR-146a plays a role of negative feedback regulation to the NF-κB signal by repressing the expression of the pro-inflammatory cytokine MIF. These findings revealed that miR-146a represents a critical role in inflammatory response and offers new evidence for miRNAs in the innate immunity of molluscs.


Subject(s)
Immunity, Innate , Inflammation , MicroRNAs/genetics , Pinctada/genetics , Pinctada/immunology , Animals , Down-Regulation , Inflammation/genetics , MicroRNAs/chemistry , MicroRNAs/metabolism , NF-kappa B/metabolism , Protein Structure, Secondary , Up-Regulation
17.
Int J Mol Sci ; 16(12): 29436-45, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26690410

ABSTRACT

miR-29a is a conserved miRNA that participates in bone formation and immune response in vertebrates. miR-29a of Pinctada martensii (Pm-miR-29a) was identified in the previous research though deep sequencing. In this report, the precise sequence of mature Pm-miR-29a was validated using miRNA rapid amplification of cDNA ends (miR-RACE) technology. The precursor sequence of Pm-miR-29a was predicted to have 87 bp. Stem loop qRT-PCR analysis showed that Pm-miR-29a was easily detected in all the tissues, although expressions in the mantle and gill were low. The microstructure showed the disrupted growth of the nacre after Pm-miR-29a over-expression, which was induced by mimic injection into P. martensii. Results of the target analysis indicated that neuropeptide Y receptor type 2 (Y2R) was the potential target of Pm-miR-29a. Meanwhile, Pm-miR-29a mimics could obviously inhibit the relative luciferase activity of the reporter containing 3' UTR (Untranslated Regions) of the Y2R gene. Furthermore, the expression of Y2R was downregulated whereas expressions of interleukin 17 (IL-17) and nuclear factor κB (NF-κB) were upregulated after Pm-miR-29a over-expression in the mantle and gill, thereby suggesting that Pm-miR-29a could activate the immune response of the pearl oyster. Results showed that Pm-miR-29a was involved in nacre formation and immune response by regulating Y2R in pearl oyster P. martensii.


Subject(s)
MicroRNAs/physiology , Nacre/biosynthesis , Pinctada/physiology , Receptors, Neuropeptide Y/metabolism , Animals , Gene Expression Regulation, Developmental , Immunity, Innate , Organ Specificity , RNA Interference , Receptors, Neuropeptide Y/genetics
18.
PLoS One ; 10(10): e0141390, 2015.
Article in English | MEDLINE | ID: mdl-26496197

ABSTRACT

Amusium pleuronectes (Linnaeus) that secretes red- and white-colored valves in two branches of mantle tissues is an excellent model for shell color research. High-throughput transcriptome sequencing and profiling were applied in this project to reveal the detailed molecular mechanism of this phenotype differentiation. In this study, 50,796,780 and 54,361,178 clean reads were generated from the left branch (secreting red valve, RS) and right branch (secreting white valve, WS) using the Illumina Hiseq 2000 platform. De novo assembly generated 149,375 and 176,652 unigenes with an average length of 764 bp and 698 bp in RS and WS, respectively. Kyoto encyclopedia of genes and genomes (KEGG) metabolic pathway analysis indicated that the differentially expressed genes were involved in 228 signaling pathways, and 43 genes were significantly enriched (P<0.01). Nineteen of 20 differentially expressed vitellogenin genes showed significantly high expression in RS, which suggested that they probably played a crucial role in organic pigment assembly and transportation of the shell. Moreover, 687 crystal formation-related (or biomineralization-related) genes were detected in A. pleuronectes, among which 144 genes exhibited significant difference between the two branches. Those genes could be classified into shell matrix framework participants, crystal nucleation and growth-related elements, upstream regulation factors, Ca level regulators, and other classifications. We also identified putative SNP and SSR markers from these samples which provided the markers for genetic diversity analysis, genetic linkage, QTL analysis. These results provide insight into the complexity of shell color differentiation in A. pleuronectes so as valuable resources for further research.


Subject(s)
Pectinidae/genetics , Pigmentation/genetics , Animal Shells/physiology , Animals , Gene Expression Profiling , Gene Ontology , Molecular Sequence Annotation , Pectinidae/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Transcriptome
19.
Int J Mol Sci ; 16(9): 21442-53, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26370972

ABSTRACT

MicroRNAs (miRNAs) are noncoding RNA molecules that function as negative regulators of target genes. In our previous research, 258 pm-miRNAs were identified in Pinctada martensii by Solexa deep sequencing. Pm-miR-2305 was one of the identified pm-miRNAs with a potential function in biomineralization. In the present study, the precursor of pm-miR-2305 was predicted with 96 bp, containing a characteristic hairpin structure. Stem-loop qRT-PCR analysis indicated that pm-miR-2305 was constitutively expressed in all the tissues (adductor muscle, gill, mantle, hepatopancreas, foot, and gonad) of P. martensii and was highly expressed in the foot. After the over-expression of pm-miR-2305 in the mantle by mimics injection into the muscle of P. martensii, nacre demonstrated disorderly growth, as detected by scanning electron microscopy. Dual luciferase reporter gene assay indicated that pm-miR-2305 mimics could significantly inhibit the luciferase activity of the reporter containing the 3'UTR of the pearlin gene. Western blot analysis demonstrated that the protein expression of pearlin was down-regulated in the mantle tissue after the over-expression of pm-miR-2305. Therefore, our data showed that pm-miR-2305 participated in nacre formation by targeting pearlin in P. martensii.


Subject(s)
MicroRNAs/genetics , Nacre/genetics , Pinctada/genetics , RNA Interference , Animals , Gene Expression , Genes, Reporter , MicroRNAs/chemistry , Nucleic Acid Conformation , RNA Precursors/chemistry , RNA Precursors/genetics , RNA, Messenger/genetics
20.
Int J Mol Sci ; 15(11): 21215-28, 2014 Nov 17.
Article in English | MEDLINE | ID: mdl-25407527

ABSTRACT

Bone morphogenetic protein 7 (BMP7), also called osteogenetic protein-1, can induce bone formation. In this study, the obtained full-length cDNA of BMP7 from Pinctada martensii (Pm-BMP7) was 2972 bp, including a 5'-untranslated region (UTR) of 294 bp, an open reading fragment of 1290 bp encoding a 429 amino acid polypeptide and a 3'-UTR of 1388 bp. The deduced protein sequence of Pm-BMP7 contained a signal peptide, a pro-domain and a mature peptide. The mature peptide consisted of 135 amino acids and included a transforming growth factor ß family domain with six shared cysteine residues. The protein sequence of Pm-BMP7 showed 66% identity with that from Crassostrea gigas. Two unigenes encoding Pm-BMPRI (Pm-BMP receptor I) and Pm-BMPRII were obtained from the transcriptome database of P. martensii. Tissue expression analysis demonstrated Pm-BMP7 and Pm-BMPRI were highly expressed in the mantle (shell formation related-tissue), while Pm-BMPRII was highly expressed in the foot. After inhibiting Pm-BMP7 expression using RNA interference (RNAi) technology, Pm-BMP7 mRNA was significantly down-regulated (p < 0.05) in the mantle pallium (nacre formation related-tissue) and the mantle edge (prismatic layer formation related-tissue). The microstructure, observed using a scanning electron microscope, indicated a disordered growth status in the nacre and obvious holes in the prismatic layer in the dsRNA-Pm-BMP7 injected-group. These results suggest that Pm-BMP7 plays a crucial role in the nacre and prismatic layer formation process of the shell.


Subject(s)
Bone Morphogenetic Protein 7/genetics , Bone Morphogenetic Protein 7/metabolism , Pinctada/genetics , Pinctada/ultrastructure , Amino Acid Sequence , Animals , Base Sequence , Bone Morphogenetic Protein 7/chemistry , Cloning, Molecular , DNA, Complementary/chemistry , DNA, Complementary/genetics , Molecular Sequence Data , Nacre/metabolism , Pinctada/anatomy & histology , Pinctada/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...