Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Res ; 54(1): 47, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37308988

ABSTRACT

Duck Tembusu virus (DTMUV), an emerging pathogenic flavivirus, causes markedly decreased egg production in laying duck and neurological dysfunction and death in ducklings. Vaccination is currently the most effective means for prevention and control of DTMUV. In previous study, we have found that methyltransferase (MTase) defective DTMUV is attenuated and induces a higher innate immunity. However, it is not clear whether MTase-deficient DTMUV can be used as a live attenuated vaccine (LAV). In this study, we investigated the immunogenicity and immunoprotection of N7-MTase defective recombinant DTMUV K61A, K182A and E218A in ducklings. These three mutants were highly attenuated in both virulence and proliferation in ducklings but still immunogenic. Furthermore, a single-dose immunization with K61A, K182A or E218A could induce robust T cell responses and humoral immune responses, which could protect ducks from the challenge of a lethal-dose of DTMUV-CQW1. Together, this study provides an ideal strategy to design LAVs for DTMUV by targeting N7-MTase without changing the antigen composition. This attenuated strategy targeting N7-MTase may apply to other flaviviruses.


Subject(s)
Ducks , Immunity, Innate , Animals , Vaccines, Attenuated , Methyltransferases
2.
J Virol ; 97(4): e0009523, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37014223

ABSTRACT

Many RING domain E3 ubiquitin ligases play critical roles in fine-tuning the innate immune response, yet little is known about their regulatory role in flavivirus-induced innate immunity. In previous studies, we found that the suppressor of cytokine signaling 1 (SOCS1) protein mainly undergoes lysine 48 (K48)-linked ubiquitination. However, the E3 ubiquitin ligase that promotes the K48-linked ubiquitination of SOCS1 is unknown. In the present study, we found that RING finger protein 123 (RNF123) binds to the SH2 domain of SOCS1 through its RING domain and facilitates the K48-linked ubiquitination of the K114 and K137 residues of SOCS1. Further studies found that RNF123 promoted the proteasomal degradation of SOCS1 and promoted Toll-like receptor 3 (TLR3)- and interferon (IFN) regulatory factor 7 (IRF7)-mediated type I IFN production during duck Tembusu virus (DTMUV) infection through SOCS1, ultimately inhibiting DTMUV replication. Overall, these findings demonstrate a novel mechanism by which RNF123 regulates type I IFN signaling during DTMUV infection by targeting SOCS1 degradation. IMPORTANCE In recent years, posttranslational modification (PTM) has gradually become a research hot spot in the field of innate immunity regulation, and ubiquitination is one of the critical PTMs. DTMUV has seriously endangered the development of the waterfowl industry in Southeast Asian countries since its outbreak in 2009. Previous studies have shown that SOCS1 is modified by K48-linked ubiquitination during DTMUV infection, but E3 ubiquitin ligase catalyzing the ubiquitination of SOCS1 has not been reported. Here, we identify for the first time that RNF123 acts as an E3 ubiquitin ligase that regulates TLR3- and IRF7-induced type I IFN signaling during DTMUV infection by targeting the K48-linked ubiquitination of the K114 and K137 residues of SOCS1 and the proteasomal degradation of SOCS1.


Subject(s)
Flavivirus Infections , Flavivirus , Interferon Type I , Suppressor of Cytokine Signaling 1 Protein , Animals , Ducks , Flavivirus/physiology , Immunity, Innate/immunology , Interferon Type I/immunology , Toll-Like Receptor 3/metabolism , Ubiquitin-Protein Ligases/immunology , Ubiquitination , Suppressor of Cytokine Signaling 1 Protein/immunology , Flavivirus Infections/immunology , Flavivirus Infections/virology , Protein Binding , Protein Domains/immunology , Virus Replication , HEK293 Cells , Embryo, Mammalian , Humans
3.
Front Immunol ; 13: 1065211, 2022.
Article in English | MEDLINE | ID: mdl-36505476

ABSTRACT

When the viruses invade the body, they will be recognized by the host pattern recognition receptors (PRRs) such as Toll like receptor (TLR) or retinoic acid-induced gene-I like receptor (RLR), thus causing the activation of downstream antiviral signals to resist the virus invasion. The cross action between ubiquitination and proteins in these signal cascades enhances the antiviral signal. On the contrary, more and more viruses have also been found to use the ubiquitination system to inhibit TLR/RLR mediated innate immunity. Therefore, this review summarizes how the ubiquitination system plays a regulatory role in TLR/RLR mediated innate immunity, and how viruses use the ubiquitination system to complete immune escape.


Subject(s)
Toll-Like Receptors , Viruses , Immunity, Innate , Ubiquitination , Antiviral Agents
4.
J Virol ; 96(18): e0093022, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36069544

ABSTRACT

Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that mainly causes a decrease in egg production in infected waterfowl. Similar to other members of the Flaviviridae family, it can proliferate in most mammalian cells and may also pose a potential threat to nonavian animals. In previous studies, we found that DTMUV infection can upregulate suppressor of cytokine signaling 1 (SOCS1) to inhibit type I interferon (IFN) production and promote virus replication, but the specific mechanism is unclear. Furthermore, little is known about the regulatory role of ubiquitination during flavivirus infection. In this study, we found that activation of Toll-like receptor 3 (TLR3) signaling rather than type I IFN stimulation led to the upregulation of SOCS1 during DTMUV infection. Further studies revealed that JOSD1 stabilized SOCS1 expression by binding to the SH2 domain of SOCS1 and mediating its deubiquitination. In addition, JOSD1 also inhibited type I IFN production through SOCS1. Finally, SOCS1 acts as an E3 ubiquitin ligase that binds to IFN regulatory factor 7 (IRF7) through its SH2 domain and mediates K48-linked ubiquitination and proteasomal degradation of IRF7, ultimately inhibiting type I IFN production mediated by IRF7 and promoting viral proliferation. These results will enrich and deepen our understanding of the mechanism by which DTMUV antagonizes the host interferon system. IMPORTANCE DTMUV is a newly discovered flavivirus that seriously harms the poultry industry. In recent years, there have been numerous studies on the involvement of ubiquitination in the regulation of innate immunity. However, little is known about the involvement of ubiquitination in the regulation of flavivirus-induced type I IFN signaling. In this study, we found that SOCS1 was induced by TLR3 signaling during DTMUV infection. Furthermore, we found for the first time that duck SOCS1 protein was also modified by K48-linked polyubiquitination, whereas our previous study found that SOCS1 was upregulated during DTMUV infection. Further studies showed that JOSD1 stabilized SOCS1 expression by mediating the deubiquitination of SOCS1. While SOCS1 acts as a negative regulator of cytokines, we found that DTMUV utilized SOCS1 to mediate the ubiquitination and proteasomal degradation of IRF7 and ultimately inhibit type I IFN production, thereby promoting its proliferation.


Subject(s)
Flavivirus Infections , Flavivirus , Host Microbial Interactions , Interferon Type I , Poultry Diseases , Animals , Ducks , Endopeptidases/genetics , Endopeptidases/metabolism , Feedback, Physiological , Flavivirus/metabolism , Flavivirus Infections/immunology , Flavivirus Infections/virology , Host Microbial Interactions/immunology , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferon Type I/immunology , Poultry Diseases/immunology , Poultry Diseases/virology , Signal Transduction/genetics , Signal Transduction/immunology , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Toll-Like Receptor 3/metabolism , Ubiquitin-Protein Ligases , Up-Regulation
5.
Poult Sci ; 101(9): 102017, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35901648

ABSTRACT

Flavivirus RNA cap-methylation plays an important role in viral infection, proliferation, and escape from innate immunity. The methyltransferase (MTase) of the flavivirus NS5 protein catalyzes viral RNA methylation. The E218 amino acid of the NS5 protein MTase domain is one of the active sites of flavivirus methyltransferase. In flaviviruses, the E218A mutation abolished 2'-O methylation activity and significantly reduced N-7 methylation activity. Tembusu virus (TMUV, genus Flavivirus) was a pathogen that caused neurological symptoms in ducklings and decreased egg production in laying ducks. In this study, we focused on a comprehensive understanding of the effects of the E218A mutation on TMUV characteristics and the host immune response. E218A mutation reduced TMUV replication and proliferation, but did not affect viral adsorption and entry. Based on a TMUV replicon system, we found that the E218A mutation impaired viral translation. In addition, E218A mutant virus might be more readily recognized by RIG-I-like receptors to activate the corresponding antiviral immune signaling than WT virus. Together, our data suggest that the E218A mutation of TMUV MTase domain impairs viral replication and translation and may activates RIG-I-like receptor signaling, ultimately leading to a reduction in viral proliferation.


Subject(s)
Flavivirus , Methyltransferases , Animals , Chickens/metabolism , Ducks/metabolism , Flavivirus/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Methyltransferases/pharmacology , Protein Methyltransferases/metabolism , Protein Methyltransferases/pharmacology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication
6.
Front Immunol ; 11: 558341, 2020.
Article in English | MEDLINE | ID: mdl-33072096

ABSTRACT

The host immune system has multiple innate immune receptors that can identify, distinguish and react to viral infections. In innate immune response, the host recognizes pathogen-associated molecular patterns (PAMP) in nucleic acids or viral proteins through pathogen recognition receptors (PRRs), especially toll-like receptors (TLRs) and induces immune cells or infected cells to produce type I Interferons (IFN-I) and pro-inflammatory cytokines, thus when the virus invades the host, innate immunity is the earliest immune mechanism. Besides, cytokine-mediated cell communication is necessary for the proper regulation of immune responses. Therefore, the appropriate activation of innate immunity is necessary for the normal life activities of cells. The suppressor of the cytokine signaling proteins (SOCS) family is one of the main regulators of the innate immune response induced by microbial pathogens. They mainly participate in the negative feedback regulation of cytokine signal transduction through Janus kinase signal transducer and transcriptional activator (JAK/STAT) and other signal pathways. Taken together, this paper reviews the SOCS proteins structures and the function of each domain, as well as the latest knowledge of the role of SOCS proteins in innate immune caused by viral infections and the mechanisms by which SOCS proteins assist viruses to escape host innate immunity. Finally, we discuss potential values of these proteins in future targeted therapies.


Subject(s)
Host-Pathogen Interactions , Immunity, Innate , Immunomodulation , Suppressor of Cytokine Signaling Proteins/metabolism , Virus Diseases/etiology , Virus Diseases/metabolism , Viruses/immunology , Animals , Carrier Proteins , Disease Management , Gene Expression Regulation , Host-Pathogen Interactions/immunology , Humans , MicroRNAs/genetics , Protein Binding , Protein Interaction Domains and Motifs , Signal Transduction , Suppressor of Cytokine Signaling Proteins/chemistry , Suppressor of Cytokine Signaling Proteins/genetics , Virus Diseases/therapy
7.
Infect Genet Evol ; 85: 104392, 2020 11.
Article in English | MEDLINE | ID: mdl-32534026

ABSTRACT

Duck Tembusu virus (DTMUV), an emerging infectious pathogen, has caused severe disease in ducks and huge economic losses to the poultry industry in China since 2009. Despite considerable advances in understanding the effects of microRNAs on host antiviral immune responses, it remains unclear how miRNAs regulate DTMUV replication in duck embryo fibroblast (DEF) cells. This study aims to clarify the role of host microRNA-148a-5p (miR-148a-5p) in regulating DTMUV replication by targeting SOCS1. First, we found that during DTMUV infection, the expression of miR-148a-5p in DEFs was downregulated in a time-dependent and dose-dependent manner, while the expression of SOCS1 was significantly upregulated. In addition, we found that when miR-148a-5p mimics were transfected into DEFs, viral RNA copies, viral E protein expression levels and viral titres, which represent viral replication and proliferation, were significantly downregulated, while the opposite result was observed when miR-148a-5p inhibitor was transfected into DEFs. Next, we found that SOCS1 was the target gene of miR-148a-5p through software analysis. Therefore, we further confirmed that SOCS1 was the target of miR-148a-5p and that miR-148a-5p could negatively regulate the expression of SOCS1 at the mRNA and protein levels. Furthermore, our results indicated that overexpression of SOCS1 promoted DTMUV replication, while knockdown of SOCS1 inhibited DTMUV replication. Finally, we found that in DTMUV-infected DEFs, the overexpression of SOCS1 inhibited the production of IFN-α and IFN-ß, while knocking down SOCS1 produced the opposite result. This indicates that during DTMUV infection, the virus promotes the expression of SOCS1 by downregulating the expression of miR-148a-5p, while the upregulation of SOCS1 suppresses the production of type I interferon and promotes virus replication. Taken together, these findings provide new insights into virus-host interactions during DTMUV infection and provide potential new antiviral treatment strategies for DTMUV infection.


Subject(s)
Flavivirus/physiology , Interferon Type I/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Virus Replication , Animals , Cells, Cultured , China , Down-Regulation , Ducks/virology , Fibroblasts/virology , Flavivirus Infections/virology , Gene Expression Regulation , Host Microbial Interactions , Immunity, Innate
SELECTION OF CITATIONS
SEARCH DETAIL
...