Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Neurosci Lett ; 837: 137893, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38997082

ABSTRACT

Shikonin is an active naphthoquinone with antioxidative, anti-inflammatory, and anticancer properties. In this study, we investigated the effects of shikonin on depressive- and anxiety-like behaviors in lipopolysaccharide- (LPS-) induced depression and chronic unpredictable mild stress (CUMS) rat models and explored the potential mechanism. First, a 14-day intraperitoneal administration of shikonin (10 mg/kg) significantly decreased immobility time in forced swimming test (FST) and increased open arm entries in elevated plus maze (EPM) test, without affecting line crossings in open field test (OFT), indicating that shikonin has anti-depressant- and anxiolytic-like effects. Second, chronic shikonin administration (10 mg/kg) reversed depressive- and anxiety-like behaviors in LPS-induced and CUMS depression models, as shown in the sucrose preference test (SPT), FST, EPM, and novel object recognition test (NORT). Finally, shikonin significantly reduced the levels of interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor-α (TNF-α) in hippocampus, indicating that the anti-depressant- and anxiolytic-like effects of shikonin are related to the reduction of neuroinflammation in hippocampus. These findings suggest that shikonin exerts anti-depressant- and anxiolytic-like effects via an anti-inflammatory mechanism of shikonin in the hippocampus.


Subject(s)
Anxiety , Depression , Hippocampus , Naphthoquinones , Rats, Sprague-Dawley , Animals , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Hippocampus/drug effects , Hippocampus/metabolism , Male , Depression/drug therapy , Anxiety/drug therapy , Rats , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Inflammation/drug therapy , Behavior, Animal/drug effects , Stress, Psychological/drug therapy , Stress, Psychological/complications , Stress, Psychological/psychology , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Lipopolysaccharides
2.
Plants (Basel) ; 13(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38891369

ABSTRACT

Sufficient soil moisture is required to ensure the successful transplantation of sweet potato seedlings. Thus, reasonable water management is essential for achieving high quality and yield in sweet potato production. We conducted field experiments in northern China, planted on 18 May and harvested on 18 October 2021, at the Nancun Experimental Base of Qingdao Agricultural University. Three water management treatments were tested for sweet potato seedlings after transplanting: hole irrigation (W1), optimized drip irrigation (W2), and traditional drip irrigation (W3). The variation characteristics of soil volumetric water content, soil temperature, and soil CO2 concentration in the root zone were monitored in situ for 0-50 days. The agronomy, root morphology, photosynthetic parameters, 13C accumulation, yield, and yield components of sweet potato were determined. The results showed that soil VWC was maintained at 22-25% and 27-32% in the hole irrigation and combined drip irrigation treatments, respectively, from 0 to 30 days after transplanting. However, there was no significant difference between the traditional (W3) and optimized (W2) drip irrigation systems. From 30 to 50 days after transplanting, the VWC decreased significantly in all treatments, with significant differences among all treatments. Soil CO2 concentrations were positively correlated with VWC from 0 to 30 days after transplanting but gradually increased from 30 to 50 days, with significant differences among treatments. Soil temperature varied with fluctuations in air temperature, with no significant differences among treatments. Sweet potato survival rates were significantly lower in the hole irrigation treatments than in the drip irrigation treatments, with no significant difference between W2 and W3. The aboveground biomass, photosynthetic parameters, and leaf area index were significantly higher under drip irrigation than under hole irrigation, and values were higher in W3 than in W2. However, the total root length, root volume, and 13C partitioning rate were higher in W2 than in W3. These findings suggest that excessive drip irrigation can lead to an imbalance in sweet potato reservoir sources. Compared with W1, the W2 and W3 treatments exhibited significant yield increases of 42.98% and 36.49%, respectively. The W2 treatment had the lowest sweet potato deformity rate.

3.
J Org Chem ; 89(11): 7970-7981, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38788145

ABSTRACT

Benzothiadiazine-1-oxide scaffolds with S-stereogenic centers are prevalent in bioactive and pharmaceutical molecules. Reported works mainly focused on the metal-catalyzed asymmetric C-H amination/cyclization reaction for the synthesis of benzothiadiazine-1-oxides. Here, we reported a chiral phosphoric acid-catalyzed kinetic resolution of sulfoximines, providing chiral benzothiadiazine-1-oxides and recovered chiral sulfoximines with moderate to good enantioselectivities (s factors up to 36.6).

4.
Transl Psychiatry ; 14(1): 190, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622130

ABSTRACT

Drug addiction represents a multifaceted and recurrent brain disorder that possesses the capability to create persistent and ineradicable pathological memory. Deep brain stimulation (DBS) has shown a therapeutic potential for neuropsychological disorders, while the precise stimulation targets and therapeutic parameters for addiction remain deficient. Among the crucial brain regions implicated in drug addiction, the dorsal raphe nucleus (DRN) has been found to exert an essential role in the manifestation of addiction memory. Thus, we investigated the effects of DRN DBS in the treatment of addiction and whether it might produce side effects by a series of behavioral assessments, including methamphetamine priming-induced reinstatement of drug seeking behaviors, food-induced conditioned place preference (CPP), open field test and elevated plus-maze test, and examined brain activity and connectivity after DBS of DRN. We found that high-frequency DBS of the DRN significantly lowered the CPP scores and the number of active-nosepokes in the methamphetamine-primed CPP test and the self-administration model. Moreover, both high-frequency and sham DBS group rats were able to establish significant food-induced place preference, and no significant difference was observed in the open field test and in the elevated plus-maze test between the two groups. Immunofluorescence staining and functional magnetic resonance imaging revealed that high-frequency DBS of the DRN could alter the activity and functional connectivity of brain regions related to addiction. These results indicate that high-frequency DBS of the DRN effectively inhibits methamphetamine priming-induced relapse and seeking behaviors in rats and provides a new target for the treatment of drug addiction.


Subject(s)
Deep Brain Stimulation , Methamphetamine , Substance-Related Disorders , Rats , Animals , Dorsal Raphe Nucleus , Deep Brain Stimulation/methods , Drug-Seeking Behavior/physiology , Substance-Related Disorders/therapy
5.
Psychiatry Res ; 335: 115886, 2024 May.
Article in English | MEDLINE | ID: mdl-38574699

ABSTRACT

We aim to systematically review and meta-analyze the effectiveness and safety of psychedelics [psilocybin, ayahuasca (active component DMT), LSD and MDMA] in treating symptoms of various mental disorders. Web of Science, Embase, EBSCO, and PubMed were searched up to February 2024 and 126 articles were finally included. Results showed that psilocybin has the largest number of articles on treating mood disorders (N = 28), followed by ayahuasca (N = 7) and LSD (N = 6). Overall, psychedelics have therapeutic effects on mental disorders such as depression and anxiety. Specifically, psilocybin (Hedges' g = -1.49, 95% CI [-1.67, -1.30]) showed the strongest therapeutic effect among four psychedelics, followed by ayahuasca (Hedges' g = -1.34, 95% CI [-1.86, -0.82]), MDMA (Hedges' g = -0.83, 95% CI [-1.33, -0.32]), and LSD (Hedges' g = -0.65, 95% CI [-1.03, -0.27]). A small amount of evidence also supports psychedelics improving tobacco addiction, eating disorders, sleep disorders, borderline personality disorder, obsessive-compulsive disorder, and body dysmorphic disorder. The most common adverse event with psychedelics was headache. Nearly a third of the articles reported that no participants reported lasting adverse effects. Our analyses suggest that psychedelics reduce negative mood, and have potential efficacy in other mental disorders, such as substance-use disorders and PTSD.


Subject(s)
Hallucinogens , Mental Disorders , Humans , Hallucinogens/adverse effects , Hallucinogens/therapeutic use , Hallucinogens/pharmacology , Mental Disorders/drug therapy , Psilocybin/pharmacology , Psilocybin/adverse effects , Psilocybin/therapeutic use , Banisteriopsis , Lysergic Acid Diethylamide/pharmacology , Lysergic Acid Diethylamide/adverse effects , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , N-Methyl-3,4-methylenedioxyamphetamine/adverse effects
6.
Aging (Albany NY) ; 16(8): 7217-7248, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38656880

ABSTRACT

AIM: In 2019, to examine the functions of METTL3 in liver and underlying mechanisms, we generated mice with hepatocyte-specific METTL3 homozygous knockout (METTL3Δhep) by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT) or Alb-Cre mice (JAX), respectively. In this study, we explored the potential reasons why hepatocyte-specific METTL3 homozygous disruption by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), resulted in acute liver failure (ALF) and then postnatal lethality. MAIN METHODS: Mice with hepatocyte-specific METTL3 knockout were generated by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT; Strain No. T003814) purchased from the GemPharmatech Co., Ltd., (Nanjing, China) or with Alb-Cre mice (JAX; Strain No. 003574) obtained from The Jackson Laboratory, followed by combined-phenotype analysis. The publicly available RNA-sequencing data deposited in the NCBI Gene Expression Omnibus (GEO) database under the accession No.: GSE198512 (postnatal lethality), GSE197800 (postnatal survival) and GSE176113 (postnatal survival) were mined to explore the potential reasons why hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), leads to ALF and then postnatal lethality. KEY FINDINGS: Firstly, we observed that hepatocyte-specific METTL3 homozygous deficiency by Alb-iCre mice (GPT) or by Alb-Cre mice (JAX) caused liver injury, abnormal lipid accumulation and apoptosis. Secondly, we are surprised to find that hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), led to ALF and then postnatal lethality. Our findings clearly demonstrated that METTL3Δhep mice (GPT), which are about to die, exhibited the severe destruction of liver histological structure, suggesting that METTL3Δhep mice (GPT) nearly lose normal liver function, which subsequently contributes to ALF, followed by postnatal lethality. Finally, we unexpectedly found that as the compensatory growth responses of hepatocytes to liver injury induced by METTL3Δhep (GPT), the proliferation of METTL3Δhep hepatocytes (GPT), unlike METTL3Δhep hepatocytes (JAX), was not evidenced by the significant increase of Ki67-positive hepatocytes, not accompanied by upregulation of cell-cycle-related genes. Moreover, GO analysis revealed that upregulated genes in METTL3Δhep livers (GPT), unlike METTL3Δhep livers (JAX), are not functionally enriched in terms associated with cell cycle, cell division, mitosis, microtubule cytoskeleton organization, spindle organization, chromatin segregation and organization, and nuclear division, consistent with the loss of compensatory proliferation of METTL3Δhep hepatocytes (GPT) observed in vivo. Thus, obviously, the loss of the compensatory growth capacity of METTL3Δhep hepatocytes (GPT) in response to liver injury might contribute to, at least partially, ALF and subsequently postnatal lethality of METTL3Δhep mice (GPT). SIGNIFICANCE: These findings from this study and other labs provide strong evidence that these phenotypes (i.e., ALF and postnatal lethality) of METTL3Δhep mice (GPT) might be not the real functions of METTL3, and closely related with Alb-iCre mice (GPT), suggesting that we should remind researchers to use Alb-iCre mice (GPT) with caution to knockout gene in hepatocytes in vivo.


Subject(s)
Hepatocytes , Liver Failure, Acute , Methyltransferases , Animals , Mice , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/pathology , Liver/metabolism , Liver Failure, Acute/genetics , Liver Failure, Acute/pathology , Liver Failure, Acute/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Mice, Knockout
7.
J Affect Disord ; 358: 399-407, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38599253

ABSTRACT

Major Depressive Disorder (MDD) is a widespread psychiatric condition that affects a significant portion of the global population. The classification and diagnosis of MDD is crucial for effective treatment. Traditional methods, based on clinical assessment, are subjective and rely on healthcare professionals' expertise. Recently, there's growing interest in using Resting-State Functional Magnetic Resonance Imaging (rs-fMRI) to objectively understand MDD's neurobiology, complementing traditional diagnostics. The posterior cingulate cortex (PCC) is a pivotal brain region implicated in MDD which could be used to identify MDD from healthy controls. Thus, this study presents an intelligent approach based on rs-fMRI data to enhance the classification of MDD. Original rs-fMRI data were collected from a cohort of 430 participants, comprising 197 patients and 233 healthy controls. Subsequently, the data underwent preprocessing using DPARSF, and the amplitudes of low-frequency fluctuation values were computed to reduce data dimensionality and feature count. Then data associated with the PCC were extracted. After eliminating redundant features, various types of Support Vector Machines (SVMs) were employed as classifiers for intelligent categorization. Ultimately, we compared the performance of each algorithm, along with its respective optimal classifier, based on classification accuracy, true positive rate, and the area under the receiver operating characteristic curve (AUC-ROC). Upon analyzing the comparison results, we determined that the Random Forest (RF) algorithm, in conjunction with a sophisticated Gaussian SVM classifier, demonstrated the highest performance. Remarkably, this combination achieved a classification accuracy of 81.9 % and a true positive rate of 92.9 %. In conclusion, our study improves the classification of MDD by supplementing traditional methods with rs-fMRI and machine learning techniques, offering deeper neurobiological insights and aiding accuracy, while emphasizing its role as an adjunct to clinical assessment.


Subject(s)
Depressive Disorder, Major , Gyrus Cinguli , Magnetic Resonance Imaging , Support Vector Machine , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/classification , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiopathology , Female , Male , Adult , Middle Aged , Case-Control Studies , Young Adult , Algorithms
8.
J Neurosci Res ; 102(3): e25315, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38439584

ABSTRACT

Post-traumatic stress disorder (PTSD), a psychological condition triggered by exposure to extreme or chronic stressful events, exhibits a sex bias in incidence and clinical manifestations. Emerging research implicates the gut microbiome in the pathogenesis of PTSD and its roles in stress susceptibility. However, it is unclear whether differential gut microbiota contribute to PTSD susceptibility in male and female rats. Here, we utilized the single prolonged stress animal model and employed unsupervised machine learning to classify stressed animals into stress-susceptible subgroups and stress-resilient subgroups. Subsequently, using 16S V3-V4 rDNA sequencing, we investigated the differential gut microbiota alterations between susceptible and resilient individuals in male and female rats. Our findings revealed distinct changes in gut microbiota composition between the sexes at different taxonomic levels. Furthermore, the abundance of Parabacteroides was lower in rats that underwent SPS modeling compared to the control group. In addition, the abundance of Tenericutes in the stress-susceptible subgroup was higher than that in the control group and stress-resilient subgroup, suggesting that Tenericutes may be able to characterize stress susceptibility. What is particularly interesting here is that Cyanobacteria may be particularly associated with anti-anxiety effects in male rats. This study underscores sex-specific variations in gut microbiota composition in response to stress and sex differences should be taken into account when using macrobiotics for neuropsychiatric treatment, highlighting potential targets for PTSD therapeutic interventions.


Subject(s)
Gastrointestinal Microbiome , Resilience, Psychological , Female , Male , Animals , Rats , Sex Characteristics , Bacteroidetes , Models, Animal
9.
J Exp Clin Cancer Res ; 43(1): 62, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38419081

ABSTRACT

BACKGROUND: In recent years, the development of adjunctive therapeutic hyperthermia for cancer therapy has received considerable attention. However, the mechanisms underlying hyperthermia resistance are still poorly understood. In this study, we investigated the roles of cold­inducible RNA binding protein (Cirbp) in regulating hyperthermia resistance and underlying mechanisms in nasopharyngeal carcinoma (NPC). METHODS: CCK-8 assay, colony formation assay, tumor sphere formation assay, qRT-PCR, Western blot were employed to examine the effects of hyperthermia (HT), HT + oridonin(Ori) or HT + radiotherapy (RT) on the proliferation and stemness of NPC cells. RNA sequencing was applied to gain differentially expressed genes upon hyperthermia. Gain-of-function and loss-of-function experiments were used to evaluate the effects of RNAi-mediated Cirbp silencing or Cirbp overexpression on the sensitivity or resistance of NPC cells and cancer stem-like cells to hyperthermia by CCK-8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay, and in subcutaneous xenograft animal model. miRNA transient transfection and luciferase reporter assay were used to demonstrate that Cirbp is a direct target of miR-377-3p. The phosphorylation levels of key members in ATM-Chk2 and ATR-Chk1 pathways were detected by Western blot. RESULTS: Our results firstly revealed that hyperthermia significantly attenuated the stemness of NPC cells, while combination treatment of hyperthermia and oridonin dramatically increased the killing effect on NPC cells and cancer stem cell (CSC)­like population. Moreover, hyperthermia substantially improved the sensitivity of radiation­resistant NPC cells and CSC­like cells to radiotherapy. Hyperthermia noticeably suppressed Cirbp expression in NPC cells and xenograft tumor tissues. Furthermore, Cirbp inhibition remarkably boosted anti­tumor­killing activity of hyperthermia against NPC cells and CSC­like cells, whereas ectopic expression of Cirbp compromised tumor­killing effect of hyperthermia on these cells, indicating that Cirbp overexpression induces hyperthermia resistance. ThermomiR-377-3p improved the sensitivity of NPC cells and CSC­like cells to hyperthermia in vitro by directly suppressing Cirbp expression. More importantly, our results displayed the significantly boosted sensitization of tumor xenografts to hyperthermia by Cirbp silencing in vivo, but ectopic expression of Cirbp almost completely counteracted hyperthermia-mediated tumor cell-killing effect against tumor xenografts in vivo. Mechanistically, Cirbp silencing-induced inhibition of DNA damage repair by inactivating ATM-Chk2 and ATR-Chk1 pathways, decrease in stemness and increase in cell death contributed to hyperthermic sensitization; conversely, Cirbp overexpression-induced promotion of DNA damage repair, increase in stemness and decrease in cell apoptosis contributed to hyperthermia resistance. CONCLUSION: Taken together, these findings reveal a previously unrecognized role for Cirbp in positively regulating hyperthermia resistance and suggest that thermomiR-377-3p and its target gene Cirbp represent promising targets for therapeutic hyperthermia.


Subject(s)
Diterpenes, Kaurane , Hyperthermia, Induced , MicroRNAs , Nasopharyngeal Neoplasms , Animals , Humans , Nasopharyngeal Neoplasms/pathology , Sincalide/metabolism , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/pathology , MicroRNAs/genetics , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic
10.
J Cancer ; 15(6): 1523-1535, 2024.
Article in English | MEDLINE | ID: mdl-38370371

ABSTRACT

Metastasis has been one of the most important causes of death from breast cancer, and chemotherapy remains the major option for metastatic breast cancer. However, drug resistance and higher toxicity from chemotherapy have been an obstacle for clinical practice, and the combination of chemotherapy with immunotherapy has emerged as a promising treatment strategy. Here, we describe a therapy based on the combination of disulfiram (DSF) and Cu2+ with widely used cytotoxic docetaxel (DTX). DSF/Cu-induced immunogenic cell death promoted the release of type I interferon and human monocyte-induced dendritic cell maturation, which established a foundation for the combination with chemotherapy. Consequently, the combination of DSF/Cu and DTX resulted in significantly more potent anti-tumor effects in 4T1-bearing mice than in single therapy. The present study has shed new light on combining DSF/Cu-induced immune responses with traditional chemotherapeutic agents to achieve greater benefits for patients with metastasis.

11.
Heliyon ; 10(1): e23748, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38205315

ABSTRACT

Objective: Post-traumatic stress disorder (PTSD) is a neuropsychiatric disorder that can develop after experiencing or witnessing a traumatic event. Exposure therapy is a common treatment for PTSD, but it has varying levels of efficacy depending on sex. In this study, we aimed to compare the sexual dimorphism in brain activation during the extinction of fear conditioning in male and female rats by detecting the c-fos levels in the whole brain. Methods: Thirty-two rats (Male: n = 16; Female: n = 16) were randomly separated into the extinction group as well as the non-extinction group, and fear conditioning was followed by extinction and non-extinction, respectively. Subsequently, brain sections from the sacrificed animal were performed immunofluorescence and the collected data were analyzed by repeated two-way ANOVAs as well as Pearson Correlation Coefficient. Results: Our findings showed that most brain areas activated during extinction were similar in both male and female rats, except for the reuniens thalamic nucleus and ventral hippocampi. Furthermore, we found differences in the correlation between c-fos activation levels and freezing behavior during extinction between male and female rats. Specifically, in male rats, c-fos activation in the anterior cingulate cortex was negatively correlated with the freezing level, while c-fos activation in the retrosplenial granular cortex was positively correlated with the freezing level; but in female rats did not exhibit any correlation between c-fos activation and freezing level. Finally, the functional connectivity analysis revealed differences in the neural networks involved in extinction learning between male and female rats. In male rats, the infralimbic cortex and insular cortex, anterior cingulate cortex and retrosplenial granular cortex, and dorsal dentate gyrus and dCA3 were strongly correlated after extinction. In female rats, prelimbic cortex and basolateral amygdala, insular cortex and dCA3, and anterior cingulate cortex and dCA1 were significantly correlated. Conclusion: These results suggest divergent neural networks involved in extinction learning in male and female rats and provide a clue for improving the clinical treatment of exposure therapy based on the sexual difference.

12.
Curr Microbiol ; 81(2): 64, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38225342

ABSTRACT

Soil microbial communities are engineers of important biogeochemical processes and play a critical role in regulating the functions and stability of forest ecosystem. However, few studies have assessed microbial interactions during forest conversion, which is essential to the understanding of the structure and function of soil microbiome. Herein, we investigated the co-occurrence network pattern and putative functions of fungal and bacterial communities in forest-transforming areas (five sites that cover the typical forests) using high-throughput sequencing of the ITS genes and 16S rRNA. Our study showed that the bacterial network had higher average connectivity and more links than fungal network, which might indicate that the bacterial community had more complex internal interactions compared with fungal one. Alphaproteobacteria_unclassfied, Telmatobacter, 0319-6A21 and Latescibacteria_unclassfied were the keystone taxa in bacterial network. For the fungal community network, the keystone taxon was Ceratobasidium. A structural equation model indicated that the available potassium and total organic carbon were important soil environmental factors, which affected all microbial modules, including bacterial and fungi. Total nitrogen had significant effects on the bacterial module that contains a relatively rich group of nitrogen cycling functions, and pH influenced the bacterial module which have higher potential functions of carbon cycling. And, more fungal modules were directly affected by forest structure (S Tree) compared with bacterial ones. This study provides new insights into our understanding of the feedback of underground creatures to forest conversion and highlights the importance of microbial modules in the nutrient cycling process.


Subject(s)
Ecosystem , Microbiota , Soil/chemistry , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Forests , Microbiota/genetics , Bacteria/genetics , Carbon , Nitrogen/analysis
13.
Mol Psychiatry ; 29(3): 730-741, 2024 03.
Article in English | MEDLINE | ID: mdl-38221548

ABSTRACT

Remote memory usually decreases over time, whereas remote drug-cue associated memory exhibits enhancement, increasing the risk of relapse during abstinence. Memory system consolidation is a prerequisite for remote memory formation, but neurobiological underpinnings of the role of consolidation in the enhancement of remote drug memory are unclear. Here, we found that remote cocaine-cue associated memory was enhanced in rats that underwent self-administration training, together with a progressive increase in the response of prelimbic cortex (PrL) CaMKII neurons to cues. System consolidation was required for the enhancement of remote cocaine memory through PrL CaMKII neurons during the early period post-training. Furthermore, dendritic spine maturation in the PrL relied on the basolateral amygdala (BLA) input during the early period of consolidation, contributing to remote memory enhancement. These findings indicate that memory consolidation drives the enhancement of remote cocaine memory through a time-dependent increase in activity and maturation of PrL CaMKII neurons receiving a sustained BLA input.


Subject(s)
Basolateral Nuclear Complex , Cocaine , Memory Consolidation , Neurons , Prefrontal Cortex , Animals , Memory Consolidation/drug effects , Memory Consolidation/physiology , Cocaine/pharmacology , Male , Rats , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiology , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/metabolism , Neurons/metabolism , Neurons/drug effects , Memory, Long-Term/drug effects , Memory, Long-Term/physiology , Cues , Rats, Sprague-Dawley , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Self Administration , Dendritic Spines/drug effects , Dendritic Spines/metabolism , Dendritic Spines/physiology , Cocaine-Related Disorders/metabolism , Cocaine-Related Disorders/physiopathology , Memory/drug effects , Memory/physiology
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166973, 2024 02.
Article in English | MEDLINE | ID: mdl-38029943

ABSTRACT

BACKGROUND: Influenza is a clinically important infectious disease with a high fatality rate, which always results in severe pneumonia. Mesenchymal stem cells (MSCs) exhibit promising therapeutic effects on severe viral pneumonia, but whether MSCs prevent virus infection and contribute to the prevention of influenza remains unknown. METHODS: ICR mice were pretreated with human umbilical cord (hUC) MSCs and then infected with the influenza H7N9 virus. Weight, survival days, and lung index of mice were recorded. Serum antibody against influenza H7N9 virus was detected according to the hemagglutination inhibition method. Before and after virus infection, T cell and B cell subtypes in the peripheral blood of mice were evaluated by flow cytometry. Cytokines in the supernatants of MSCs, innate immune cells, and mouse broncho alveolar lavage fluid (BALF) were determined by enzyme-linked immunosorbent assay (ELISA) or Luminex Assay. RESULTS: Pretreatment with MSCs protected mice against influenza H7N9 virus infection. Weight loss, survival rate, and structural and functional damage to the lungs of infected mice were significantly improved. Mechanistically, MSCs modulated T lymphocyte response in virus-infected mice and inhibited the cGAS/STING pathway. Importantly, the protective effect of MSCs was mediated by cell-to-cell communications and attenuation of cytokine storm caused by immune overactivation.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza, Human , Mesenchymal Stem Cells , Orthomyxoviridae Infections , Pneumonia, Viral , Humans , Animals , Mice , Mice, Inbred ICR , Orthomyxoviridae Infections/therapy
15.
Angew Chem Int Ed Engl ; 63(7): e202316954, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38072899

ABSTRACT

Despite the great success of perovskite photovoltaics in terms of device efficiency and stability using laboratory-scale spin-coating methods, the demand for high-throughput and cost-effective solutions remains unresolved and rarely reported because of the complicated nature of perovskite crystallization. In this work, we propose a stable precursor ink design strategy to control the solvent volatilization and perovskite crystallization to enable the wide speed window printing (0.3 to 18.0 m/min) of phase-pure FAPbI3 perovskite solar cells (pero-SCs) in ambient atmosphere. The FAPbI3 perovskite precursor ink uses volatile acetonitrile (ACN) as the main solvent with DMF and DMSO as coordination additives is beneficial to improve the ink stability, inhibit the coffee rings, and the complicated intermediate FAPbI3 phases, delivering high-quality pin-hole free and phase-pure FAPbI3 perovskite films with large-scale uniformity. Ultimately, small-area FAPbI3 pero-SCs (0.062 cm2 ) and large-area modules (15.64 cm2 ) achieved remarkable efficiencies of 24.32 % and 21.90 %, respectively, whereas the PCE of the devices can be maintained at 23.76 % when the printing speed increases to 18.0 m/min. Specifically, the unencapsulated device exhibits superior operational stability with T90 >1350 h. This work represents a step towards the scalable, cost-effective manufacturing of perovskite photovoltaics with both high performance and high throughput.

16.
Life Sci ; 334: 122222, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38084673

ABSTRACT

AIM: Deep brain stimulation (DBS) is currently under investigation as a potential therapeutic approach for managing major depressive disorder (MDD) and ventromedial prefrontal cortex (vmPFC) is recognized as a promising target region. Therefore, the present study aimed to investigate a preclinical paradigm of bilateral vmPFC DBS and examine the molecular mechanisms underlying its antidepressant-like effects using chronic unpredictable stress (CUS) model in rats. MAIN METHODS: Male rats were subjected to stereotaxic surgery and deep brain stimulation paradigm in non-stressed and CUS rats respectively, and the therapeutic effect of DBS were assessed by a series of behavioral tests including sucrose preference test, open field test, elevated plus maze test, and forced swim test. The potential involvement of the BDNF/TrkB signaling pathway and its downstream effects in this process were also investigated using western blot. KEY FINDINGS: We identified that a stimulation protocol consisting of 130 Hz, 200 µA, 90 µs pulses administered for 5 h per day over a period of 7 days effectively mitigated CUS-induced depressive-like and anxiety-like behaviors in rats. These therapeutic effects were associated with the enhancement of the BDNF/TrkB signaling pathway and its downstream ERK1/2 activity. SIGNIFICANCE: These findings provide valuable insights into the potential clinical utility of vmPFC DBS as an approach of improving the symptoms experienced by individuals with MDD. This evidence contributes to our understanding of the neurobiological basis of depression and offers promise for the development of more effective treatments.


Subject(s)
Deep Brain Stimulation , Depressive Disorder, Major , Rats , Male , Animals , Depression/drug therapy , Deep Brain Stimulation/methods , Brain-Derived Neurotrophic Factor/metabolism , Prefrontal Cortex/metabolism , Signal Transduction , Stress, Psychological/drug therapy , Hippocampus/metabolism , Disease Models, Animal
17.
Diagnostics (Basel) ; 13(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37998595

ABSTRACT

The occurrence of new vertebral fractures (NVFs) after vertebral augmentation (VA) procedures is common in patients with osteoporotic vertebral compression fractures (OVCFs), leading to painful experiences and financial burdens. We aim to develop a radiomics nomogram for the preoperative prediction of NVFs after VA. Data from center 1 (training set: n = 153; internal validation set: n = 66) and center 2 (external validation set: n = 44) were retrospectively collected. Radiomics features were extracted from MRI images and radiomics scores (radscores) were constructed for each level-specific vertebra based on least absolute shrinkage and selection operator (LASSO). The radiomics nomogram, integrating radiomics signature with presence of intravertebral cleft and number of previous vertebral fractures, was developed by multivariable logistic regression analysis. The predictive performance of the vertebrae was level-specific based on radscores and was generally superior to clinical variables. RadscoreL2 had the optimal discrimination (AUC ≥ 0.751). The nomogram provided good predictive performance (AUC ≥ 0.834), favorable calibration, and large clinical net benefits in each set. It was used successfully to categorize patients into high- or low-risk subgroups. As a noninvasive preoperative prediction tool, the MRI-based radiomics nomogram holds great promise for individualized prediction of NVFs following VA.

18.
BMC Oral Health ; 23(1): 900, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37990212

ABSTRACT

BACKGROUND: The prevalence of oral diseases among Taiwanese prisoners has rarely been investigated. This study aimed to estimate the gender-specific prevalence of oral disease in a sample of Taiwanese prisoners. METHODS: We included 83,048 participants from the National Health Insurance (NHI) Program. Outcomes were measured using the clinical version of the International Classification of Diseases, Ninth Revision (ICD-9-CM). For prevalence, we provide absolute values and percentages. We also performed a χ2 test to assess sex and age group differences in the percentage of disease in the oral cavity, salivary glands, and jaw. RESULTS: The prevalence rate of oral diseases was 25.90%, which was higher than that of the general population. The prevalence of oral diseases in female prisoners was higher than that in male prisoners (p < 0.001), and the prevalence of oral diseases in prisoners aged ≤ 40 was higher than that of prisoners aged > 40. Among all cases of diagnosed oral diseases, the top three diseases were dental hard tissue diseases (13.28%), other cellulitis and abscesses (9.79%), and pruritus and related conditions (2.88%), respectively. The prevalence of various oral diseases in female prisoners was significantly higher than that in male prisoners. CONCLUSION: Oral disease is common among Taiwanese prisoners. Female prisoners had a higher prevalence of oral, salivary gland, and jaw diseases than male prisoners. Therefore, early prevention and appropriate treatment are required and also a need for gender-specific oral disease products given the differences in the prevalence of oral disease among male and female prisoners.


Subject(s)
Oral Health , Prisoners , Humans , Male , Female , Cross-Sectional Studies , Sex Factors , Taiwan/epidemiology , Prevalence
19.
Neurosci Biobehav Rev ; 155: 105433, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37898446

ABSTRACT

Ample sleep is an important basis for maintaining health, however with the pace of life accelerating in modern society, more people are using sacrificial sleep to cope with these social changes. Sleep deprivation can have negative effects on cognitive performance and psychosomatic health. It is well known that exercise, as a beneficial intervention strategy for human health, has been increasingly used in the clinic. But it's not clear if it can prevent the negative effects of sleep deprivation. In this meta-analysis, we reviewed 23 articles from PubMed and Web of Science to investigate whether moderate physical exercise can prevent the negative effects of sleep deprivation in rodents. Our findings suggest that exercise can prevent sleep deprivation-induced cognitive impairment and anxiety-like behaviors through multiple pathways. We also discuss possible molecular mechanisms involved in this protective effect, highlighting the potential of exercise as a preventive or therapeutic strategy for sleep deprivation-induced negative effects.


Subject(s)
Exercise , Sleep Deprivation , Humans , Sleep Deprivation/complications , Sleep Deprivation/psychology , Sleep , Anxiety
20.
Appl Opt ; 62(27): 7240-7247, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37855580

ABSTRACT

Whispering gallery mode (WGM) microresonators offer significant potential for precise displacement measurement owing to their compact size, ultrahigh sensitivity, and rapid response. However, conventional WGM displacement sensors are prone to noise interference, resulting in accuracy loss, while the demodulation process for displacement often exhibits prolonged duration. To address these limitations, this study proposes a rapid and high-precision displacement sensing method based on the dip areas of multiple resonant modes in a surface nanoscale axial photonics microresonator. By employing a neural network to fit the nonlinear relationship between displacement and the areas of multiple resonant dips, we achieve displacement prediction with an accuracy better than 0.03 µm over a range of 200 µm. In comparison to alternative sensing approaches, this method exhibits resilience to temperature variations, and its sensing performance remains comparable to that in a noise-free environment as long as the signal-to-noise ratio is greater than 25 dB. Furthermore, the extraction of the dip area enables significantly enhanced speed in displacement measurement, providing an effective solution for achieving rapid and highly accurate displacement sensing.

SELECTION OF CITATIONS
SEARCH DETAIL