Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
RSC Adv ; 12(44): 28629-28636, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36320548

ABSTRACT

Heteroatom doping has proved to be one of the most effective approaches to further improve the photocatalytic activities of semiconducting oxides originating from the modulation of their electronic structures. Herein, nitrogen-doped SnO2 nanorods were synthesized via facile solvothermal processes using polyvinylpyrrolidone (PVP) as a dispersing agent and ammonium water as the N source, respectively. Compared with pure SnO2 sample, the as-synthesized nitrogen-doped SnO2 nanorods demonstrated enhanced photocatalytic performances, evaluated by the degradation of rhodamine B (RhB), revealing the effectiveness of nitrogen doping towards photocatalysis. In particular, the optimal photocatalyst (using 0.6 g PVP and 1 mL ammonia water) could achieve up to 86.23% pollutant removal efficiency under ultraviolet (UV) light irradiation within 150 min, showing 17.78% higher efficiency than pure SnO2. Detailed structural and spectroscopic characterization reveals the origin of activity enhancement of nitrogen-doping SnO2 in contrast with pure SnO2. Specifically, the bandgap and the morphologies of nitrogen-doped SnO2 have changed with more chemisorbed sites, which is supposed to result in the enhancement of photocatalytic efficiency. Moreover, the possible formation mechanism of nitrogen-doped SnO2 nanorods was discussed, in which PVP played a crucial role as the structure orientator.

2.
Sci Total Environ ; 831: 154972, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35367558

ABSTRACT

The responses of the operational performance and bacterial community structure of a nitrification membrane bioreactor (MBR) to elevated ammonia loading rate (ALR) were investigated. Effective nitrification performance was achieved at high ALR up to 3.43 kg NH4+-N/m3·d, corresponding to influent NH4+-N concentration of 2000 mg/L. Further increasing influent NH4+-N concentration to 3000 mg/L, the MBR system finally became completely inefficient due to the combined inhibition effect of salinity, free ammonia and free nitrous acid on nitrification. Ammonia-oxidizing bacteria (AOB) Nitrosomonas were enriched with the increase of ALR. The relative abundance of Nitrosomonas in the sludge with ALR of 2.57 kg NH4+-N/m3·d was up to 14.82%, which were 9-fold and 53-fold higher than that in seed sludge and the sludge with ALR of 0.10 kg NH4+-N/m3·d, respectively. The phylogenetic analysis of AOB amoA genes showed that Nitrosomonas europaea/mobilis lineage are chiefly responsible for catalyzing ammonia oxidation at high ALRs.


Subject(s)
Betaproteobacteria , Nitrification , Ammonia/chemistry , Bacteria/genetics , Bioreactors/microbiology , Nitrosomonas , Nitrous Acid , Oxidation-Reduction , Phylogeny , Salinity , Sewage/chemistry
3.
Nanomaterials (Basel) ; 12(3)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35159839

ABSTRACT

There have been many studies on contaminant removal by fresh and aged nanoscale zero-valent iron (nZVI), but the effect of spatial distribution of nZVI on the corrosion behavior of the composite materials and its subsequent Cr(VI) removal remains unclear. In this study, four types of D201-nZVI composites with different nZVI distributions (named D1, D2, D3, and D4) were fabricated and pre-corroded in varying coexisting solutions. Their effectiveness in the removal of Cr(VI) were systematically investigated. The results showed acidic or alkaline conditions, and all coexisting ions studied except for H2PO4- and SiO32- enhanced the corrosion of nZVI. Additionally, the Cr(VI) removal efficiency was observed to decrease with increasing nZVI distribution uniformity. The corrosion products derived from nZVI, including magnetite, hematite, lepidocrcite, and goethite, were identified by XRD. The XPS results suggested that the Cr(VI) and Cr(III) species coexisted and the Cr(III) species gradually increased on the surface of the pre-corroded D201-nZVI with increasing iron distribution uniformity, proving Cr(VI) removal via a comprehensive process including adsorption/coprecipitation and reduction. The results will help to guide the selection for nZVI nanocomposites aged under different conditions for environmental decontamination.

4.
J Colloid Interface Sci ; 605: 602-612, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34343733

ABSTRACT

Hexavalent chromium (Cr(VI)) is considered to be a potential metal contaminant because of its toxicity and carcinogenicity. In this work, the surface charge density of nickel-iron layered double hydroxide (NiFe LDH) is tuned through iron valence change to improve the performance in adsorption of Cr(VI). The addition of iron divalent in the precursor enhances the surface positivity and reducibility of Fe2+-NiFe LDH, resulting in a nearly 150% Cr(VI) maximum adsorption capacity improvement. The increase of hydroxyl groups and charge density on the surface of NiFe LDH is due to the topological chemical transition from Ni2+-Fe2+ LDH to Ni2+-Fe3+ LDH. The adsorption of Cr(VI) onto Fe2+-NiFe LDH prepared via topochemical approach is highly pH-dependent. The adsorption dynamics and isotherms results may be clearly elucidated by the pseudo-second-order model and Langmuir isotherm model. Electrostatic attraction, interlayer anion exchange and adsorption-coupled reduction are proven to be the main Cr(VI) removal mechanisms for Fe2+-NiFe LDH. This finding demonstrates that Fe2+-NiFe LDH adsorbents have potential application for efficient removal of Cr(VI) pollutants.


Subject(s)
Iron , Water Pollutants, Chemical , Adsorption , Chromium/analysis , Hydroxides , Kinetics , Nickel , Water Pollutants, Chemical/analysis
5.
Article in English | MEDLINE | ID: mdl-34360363

ABSTRACT

Herein, the responses of the operational performance of a membrane bioreactor (MBR) with a high ammonium-nitrogen (NH4+-N) load and microbial community structure to increasing carbon to nitrogen (C/N) ratios were studied. Variation in the influent C/N ratio did not affect the removal efficiencies of chemical oxygen demand (COD) and NH4+-N but gradually abated the ammonia oxidization activity of sludge. The concentration of the sludge in the reactor at the end of the process increased four-fold compared with that of the seed sludge, ensuring the stable removal of NH4+-N. The increasing influent COD concentration resulted in an elevated production of humic acids in soluble microbial product (SMP) and accelerated the rate of membrane fouling. High-throughput sequencing analysis showed that the C/N ratio had selective effects on the microbial community structure. In the genus level, Methyloversatilis, Subsaxibacter, and Pseudomonas were enriched during the operation. However, the relative abundance of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) involved in nitrification declined gradually and were decreased by 86.54 and 90.17%, respectively, with influent COD increasing from 0 to 2000 mg/L. The present study offers a more in-depth insight into the control strategy of the C/N ratio in the operation of an MBR with a high NH4+-N load.


Subject(s)
Ammonia , Microbiota , Bioreactors , Carbon , Nitrogen , Sewage , Waste Disposal, Fluid
6.
Ecotoxicology ; 30(7): 1419-1428, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33620635

ABSTRACT

In this study, two cadmium-tolerant endophytic bacteria (Microbacterium sp. D2-2 and Bacillus sp. C9-3) were employed as biosorbents to remove Cd(II) from aqueous solutions. The influence of initial pH, initial Cd(II) concentration, adsorbent biomass, temperature and contact time on Cd(II) removal were investigated. Results showed that the Langmuir isotherms were found to best fit the equilibrium data, and the maximum biosorption capacities were found to be 222.22 and 163.93 mg/g at a solution pH of 5.0 for Microbacterium sp. D2-2 and Bacillus sp. C9-3, respectively. The biosorption kinetics followed well pseudo-second-order kinetics. Fourier transform infrared spectroscopic analysis suggested that the hydroxyl, carboxyl, carbonyl and amino groups on Microbacterium sp. D2-2 and Bacillus sp. C9-3 biomass were the main binding sites for Cd(II). The results presented in this study showed that Microbacterium sp. D2-2 and Bacillus sp. C9-3 are potential and promising adsorbents for the effective removal of Cd(II) from aqueous solutions.


Subject(s)
Bacillus , Water Pollutants, Chemical , Adsorption , Biomass , Cadmium/toxicity , Hydrogen-Ion Concentration , Kinetics , Microbacterium , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL