Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(9): 3921-3928, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37102437

ABSTRACT

Twisted photons can in principle carry a discrete unbounded amount of orbital angular momentum (OAM), which are of great significance for quantum communication and fundamental tests of quantum theory. However, the methods for characterization of the OAM quantum states present a fundamental limit for miniaturization. Metasurfaces can exploit new degrees of freedom to manipulate optical fields beyond the capabilities of bulk optics, opening a broad range of novel and superior applications in quantum photonics. Here we present a scheme to reconstruct the density matrix of the OAM quantum states of single photons with all-dielectric metasurfaces composed of birefringent meta-atoms. We have also measured the Schmidt number of the OAM entanglement by the multiplexing of multiple degrees of freedom. Our work represents a step toward the practical application of quantum metadevices for the measurement of OAM quantum states in free-space quantum imaging and communications.

2.
Phys Rev Lett ; 130(5): 050805, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36800454

ABSTRACT

High-dimensional (HD) entanglement enables an encoding of more bits than in the two-dimensional case and promises to increase communication capacity over quantum channels and to improve robustness to noise. In practice, however, one of the central challenges is to devise efficient methods to quantify the HD entanglement explicitly. Full quantum state tomography is a standard technology to obtain all the information about the quantum state, but it becomes impractical because the required measurements increase exponentially with the dimension in HD systems. Hence, it is highly anticipated that a new method will be found for characterizing the HD entanglement with as few measurements as possible and without introducing unwarranted assumptions. Here, we present and demonstrate a scan-free tomography method independent of dimension, which only requires two measurements for the characterization of two-photon HD orbital angular momentum (OAM) entanglement. Taking Laguerre-Gaussian modes of photons as an example, the density matrices of OAM entangled states are experimentally reconstructed with very high fidelity. Our method is also generalized to the mixed HD OAM entanglement. Our results provide realistic approaches for quantifying more complex OAM entanglement in many scientific and engineering fields such as multiphoton HD quantum systems and quantum process tomography.

3.
Opt Lett ; 45(3): 682-685, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32004284

ABSTRACT

Phase memory is an effect in which the interaction between a coherent pump beam and a nonlinear crystal generates photon pairs via the spontaneous parametric down-conversion process, then the down-converted photons (signal and idler) can carry the phase information of the pump beam. There has been much research on the memory of the dynamic phase so far; however, there is no report on the memory of non-dynamic phase, to the best of our knowledge. Here we acquire a Pancharatnam-Berry (PB) geometric phase in a physical system when light travels along a trajectory in polarization-state space. Induced coherence occurs in a cascaded scheme composed of two nonlinear crystals, when the idler photons in both crystals are aligned to be indistinguishable. A NOON ($N\; = \;{2}$N=2) state is established when blocking the two idler photons. We explore the PB geometric phase memory of the NOON state and induced coherence. We find that the first-order interference of the two-photon state or signal photons can be controlled by introducing the PB geometric phase to the pump light. This may facilitate precise control of the phase of the down-converted photons.

4.
Sci Adv ; 5(6): eaat9206, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31214646

ABSTRACT

High-dimensional Bell-like states are necessary for increasing the channel capacity of the quantum protocol. However, their preparation and measurement are still huge challenges, especially for the latter. Here, we prepare an initial eight-dimensional Bell-like state based on hyperentanglement of spin and orbital angular momentum (OAM) of the first and the third orders. We design simple unitary operations to produce eight Bell-like states, which can be distinguished completely in theory among each other. We propose and illustrate a multiple projective measurement scheme composed of only linear optical elements and experimentally demonstrate that all the eight hyperentangled Bell-like states can be completely distinguished by our scheme. Our idea of manipulating the eight Bell-like states is beneficial to achieve the 3-bit channel capacity of quantum protocol, opening the door for extending applications of OAM states in future quantum information technology.

5.
Opt Lett ; 44(9): 2382-2385, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31042228

ABSTRACT

We design and realize a generator that can convert an orbital angular momentum (OAM) state into a vector polarization state. The generator is integrated by several commonly used optical elements and easy to make or glued. Compared with traditional interferometric ways for generating the vector optical fields, this integrated generator has compact and robust advantages and especially a high-efficiency of 87%.

SELECTION OF CITATIONS
SEARCH DETAIL
...