Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 248
Filter
1.
bioRxiv ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38979220

ABSTRACT

The identification of microglia subtypes is important for understanding the role of innate immunity in neurodegenerative diseases. Current methods of unsupervised cell type identification assume a small noise-to-signal ratio of transcriptome measurements that would produce well-separated cell clusters. However, identification of subtypes is obscured by gene expression noise, diminishing the distances in transcriptome space between distinct cell types and blurring boundaries. Here we use Fokker-Planck (FP) diffusion maps to model cellular differentiation as a stochastic process whereby cells settle into local minima, corresponding to cell subtypes, in a potential landscape constructed from transcriptome data using a nearest neighbor graph approach. By applying critical transition fields, we identify individual cells on the verge of transitioning between subtypes, revealing microglial cells in inactivated, homeostatic state before radially transitioning into various specialized subtypes. Specifically, we show that cells from Alzheimer's disease patients are enriched in a microglia subtype associated to antigen presentation and T-cell recruitment.

2.
Adv Sci (Weinh) ; : e2401855, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973158

ABSTRACT

Clinically, chronic pain and depression often coexist in multiple diseases and reciprocally reinforce each other, which greatly escalates the difficulty of treatment. The neural circuit mechanism underlying the chronic pain/depression comorbidity remains unclear. The present study reports that two distinct subregions in the paraventricular thalamus (PVT) play different roles in this pathological process. In the first subregion PVT posterior (PVP), glutamatergic neurons (PVPGlu) send signals to GABAergic neurons (VLPAGGABA) in the ventrolateral periaqueductal gray (VLPAG), which mediates painful behavior in comorbidity. Meanwhile, in another subregion PVT anterior (PVA), glutamatergic neurons (PVAGlu) send signals to the nucleus accumbens D1-positive neurons and D2-positive neurons (NAcD1→D2), which is involved in depression-like behavior in comorbidity. This study demonstrates that the distinct thalamo-subcortical circuits PVPGlu→VLPAGGABA and PVAGlu→NAcD1→D2 mediated painful behavior and depression-like behavior following spared nerve injury (SNI), respectively, which provides the circuit-based potential targets for preventing and treating comorbidity.

3.
Sci Adv ; 10(23): eadj7706, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848360

ABSTRACT

Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell-state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing nongenetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupt acquired resistance in GBM.


Subject(s)
Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glioma , Neoplastic Stem Cells , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Drug Resistance, Neoplasm/genetics , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Glioma/drug therapy , Temozolomide/pharmacology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Cell Line, Tumor , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/drug therapy
4.
Histochem Cell Biol ; 162(1-2): 149-159, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38811432

ABSTRACT

The development of progressively sophisticated tools complemented by the integration of live cell imaging enhances our understanding of the four-dimensional (4D) nucleome, revealing elaborate molecular interactions and chromatin states. Yet, the dynamics of chromosomes in relation to nuclear organelles or to each other across cell cycle in living cells are underexplored. We have developed photoconvertible GFP H3-Dendra2 stably expressing in PC3M cells. The nuclear lamina and perinucleolar associated heterochromatin or diffuse chromosome regions were photoconverted through a single-point activation using a confocal microscope. The results demonstrated a dynamic nature for both types of chromosomes in the same cell cycle and across mitosis. While some chromosome domains were heritably associated with either nuclear lamina or nucleoli, others changed alliance to different nuclear organelles postmitotically. In addition, co-photoconverted chromosome domains often do not stay together within the same cell cycle and across mitosis, suggesting a transient nature of chromosome neighborhoods. Long-range spreading and movement of chromosomes were also observed. Interestingly, when cells were treated with a low concentration of actinomycin D that inhibits Pol I transcription through intercalating GC-rich DNA, chromosome movement was significantly blocked. Treatment with another Pol I inhibitor, metarrestin, which does not impact DNA, had little effect on the movement, suggesting that the DNA structure itself plays a role in chromosome dynamics. Furthermore, inhibition of Pol II transcription with α-amanitin also reduced the chromosome movement, demonstrating that Pol II, but not Pol I transcription, is important for chromosome dynamics in the nucleus.


Subject(s)
Cell Nucleus , Humans , Cell Nucleus/metabolism , Cell Nucleus/chemistry , Chromosomes/metabolism , Organelles/metabolism , Organelles/chemistry
5.
Medicine (Baltimore) ; 103(16): e37666, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640276

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by hyperglycemia, insulin resistance, and insufficient insulin secretion. Sarcopenia, as a new complication of diabetes, is characterized by the loss of muscle mass and the progressive decline of muscle strength and function in T2DM patients, which has a serious impact on the physical and mental health of patients. Insulin resistance, mitochondrial dysfunction, and chronic inflammation are common mechanisms of diabetes and sarcopenia. Reasonable exercise training, nutrition supplement, and drug intervention may improve the quality of life of patients with diabetes combined with sarcopenia. This article reviews the relevant factors and management measures of sarcopenia in T2DM patients, in order to achieve early detection, diagnosis, and intervention.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Sarcopenia , Humans , Sarcopenia/diagnosis , Sarcopenia/etiology , Sarcopenia/therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Quality of Life , Muscle Strength
6.
bioRxiv ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38370784

ABSTRACT

Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing non-genetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupts acquired resistance in GBM.

7.
Curr Med Imaging ; 20: 1-8, 2024.
Article in English | MEDLINE | ID: mdl-38389359

ABSTRACT

OBJECTIVES: To investigate CT, MRI, and PET/CT features with histopathological findings of primary thymic neuroendocrine tumor. MATERIALS AND METHODS: All 9 cases with pathologically proven primary thymic neuroendocrine tumors were reviewed retrospectively. Among them, 7 underwent enhanced CT, 1 with MRI (enhanced) and another with PET/CT scan. Multiple characters were examined, including tumor location, contour, CT attenuation, enhancement pattern, involvement of surrounding structure and lymphadenopathy. RESULTS: Among 9 patients studied, 7 (77%) masses were located in the anterior superior mediastinum, 1 in the anterior superior-middle mediastinum, and 1 in the anterior and middle mediastinum. The maximum diameter (longitudinal) ranged from 4.2 to 23 cm (mean ± standard deviation, 9.5 cm ± 2.8). Four masses had irregular, 3 had lobulated, and 2 had smooth contours, while 8 masses had clear margins and 1 had an ill-defined margin. Six masses showed heterogeneous attenuation with necrotic/cystic component (n=5), calcification (n=2) and hemorrhage(n=1), and 3 showed homogeneous attenuation on the non-enhanced image. After contrast administration, 8 masses showed heterogeneous attenuation, and 1 showed homogeneous attenuation with tumor vessels visible in 4 masses. Among all, 8 masses showed strong enhancement, and 1 showed moderate enhancement in comparison to muscles in the anterior thoracic wall on enhanced images. Involvement of adjacent mediastinal structures was observed in 5 cases. Immunohistochemical analysis showed that the tumor cells were positive for CgA, Syn, CK, CD56 and EMA. CONCLUSION: Primary NETs are large masses located anterior superior mediastinum, irregular in contour, showing heterogeneous attenuation with necrotic/cystic component and strong heterogeneous enhancement with tumor vessels, compressing local mediastinal structures. In addition, immunohistochemical examination is required in such a diagnosis.


Subject(s)
Neuroendocrine Tumors , Thymoma , Thymus Neoplasms , Humans , Neuroendocrine Tumors/diagnostic imaging , Positron Emission Tomography Computed Tomography , Retrospective Studies , Tomography, X-Ray Computed/methods , Thymus Neoplasms/diagnostic imaging
8.
Proc Natl Acad Sci U S A ; 121(7): e2314085121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38330013

ABSTRACT

Cancer therapy, including immunotherapy, is inherently limited by chronic inflammation-induced tumorigenesis and toxicity within the tumor microenvironment. Thus, stimulating the resolution of inflammation may enhance immunotherapy and improve the toxicity of immune checkpoint inhibition (ICI). As epoxy-fatty acids (EpFAs) are degraded by the enzyme soluble epoxide hydrolase (sEH), the inhibition of sEH increases endogenous EpFA levels to promote the resolution of cancer-associated inflammation. Here, we demonstrate that systemic treatment with ICI induces sEH expression in multiple murine cancer models. Dietary omega-3 polyunsaturated fatty acid supplementation and pharmacologic sEH inhibition, both alone and in combination, significantly enhance anti-tumor activity of ICI in these models. Notably, pharmacological abrogation of the sEH pathway alone or in combination with ICI counter-regulates an ICI-induced pro-inflammatory and pro-tumorigenic cytokine storm. Thus, modulating endogenous EpFA levels through dietary supplementation or sEH inhibition may represent a unique strategy to enhance the anti-tumor activity of paradigm cancer therapies.


Subject(s)
Epoxide Hydrolases , Neoplasms , Mice , Humans , Animals , Epoxide Hydrolases/metabolism , Fatty Acids/metabolism , Inflammation/metabolism , Neoplasms/therapy , Immunotherapy , Tumor Microenvironment
9.
Front Digit Health ; 6: 1336050, 2024.
Article in English | MEDLINE | ID: mdl-38343907

ABSTRACT

Introduction: A digital twin is a virtual representation of a patient's disease, facilitating real-time monitoring, analysis, and simulation. This enables the prediction of disease progression, optimization of care delivery, and improvement of outcomes. Methods: Here, we introduce a digital twin framework for type 2 diabetes (T2D) that integrates machine learning with multiomic data, knowledge graphs, and mechanistic models. By analyzing a substantial multiomic and clinical dataset, we constructed predictive machine learning models to forecast disease progression. Furthermore, knowledge graphs were employed to elucidate and contextualize multiomic-disease relationships. Results and discussion: Our findings not only reaffirm known targetable disease components but also spotlight novel ones, unveiled through this integrated approach. The versatile components presented in this study can be incorporated into a digital twin system, enhancing our grasp of diseases and propelling the advancement of precision medicine.

10.
Elife ; 132024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240312

ABSTRACT

Out of the several hundred copies of rRNA genes arranged in the nucleolar organizing regions (NOR) of the five human acrocentric chromosomes, ~50% remain transcriptionally inactive. NOR-associated sequences and epigenetic modifications contribute to the differential expression of rRNAs. However, the mechanism(s) controlling the dosage of active versus inactive rRNA genes within each NOR in mammals is yet to be determined. We have discovered a family of ncRNAs, SNULs (Single NUcleolus Localized RNA), which form constrained sub-nucleolar territories on individual NORs and influence rRNA expression. Individual members of the SNULs monoallelically associate with specific NOR-containing chromosomes. SNULs share sequence similarity to pre-rRNA and localize in the sub-nucleolar compartment with pre-rRNA. Finally, SNULs control rRNA expression by influencing pre-rRNA sorting to the DFC compartment and pre-rRNA processing. Our study discovered a novel class of ncRNAs influencing rRNA expression by forming constrained nucleolar territories on individual NORs.


Subject(s)
Nucleolus Organizer Region , RNA Precursors , Humans , Animals , Nucleolus Organizer Region/genetics , Nucleolus Organizer Region/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Chromosomes, Human/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Mammals/genetics
11.
Nucleus ; 15(1): 2306777, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38281066

ABSTRACT

The perinucleolar compartment (PNC) was initially identified as a nuclear structure enriched for the polypyrimidine tract-binding protein. Since then, the PNC has been implicated in carcinogenesis. The prevalence of this compartment is positively correlated with disease progression in various types of cancer, and its expression in primary tumors is linked to worse patient outcomes. Using the PNC as a surrogate marker for anti-cancer drug efficacy has led to the development of a clinical candidate for anti-metastasis therapies. The PNC is a multicomponent nuclear body situated at the periphery of the nucleolus. Thus far, several non-coding RNAs and RNA-binding proteins have been identified as the PNC components. Here, we summarize the current understanding of the structure and function of the PNC, as well as its recurrent links to cancer progression and metastasis.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Cell Nucleus/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Cell Nucleolus/metabolism , RNA-Binding Proteins/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/metabolism
13.
J Theor Biol ; 575: 111645, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37863423

ABSTRACT

Recent studies at individual cell resolution have revealed phenotypic heterogeneity in nominally clonal tumor cell populations. The heterogeneity affects cell growth behaviors, which can result in departure from the idealized uniform exponential growth of the cell population. Here we measured the stochastic time courses of growth of an ensemble of populations of HL60 leukemia cells in cultures, starting with distinct initial cell numbers to capture a departure from the uniform exponential growth model for the initial growth ("take-off"). Despite being derived from the same cell clone, we observed significant variations in the early growth patterns of individual cultures with statistically significant differences in growth dynamics, which could be explained by the presence of inter-converting subpopulations with different growth rates, and which could last for many generations. Based on the hypothesis of existence of multiple subpopulations, we developed a branching process model that was consistent with the experimental observations.


Subject(s)
Population Growth , Cell Cycle , Cell Proliferation , Clone Cells , Phenotype , Stochastic Processes
14.
J Clin Transl Sci ; 7(1): e214, 2023.
Article in English | MEDLINE | ID: mdl-37900350

ABSTRACT

Knowledge graphs have become a common approach for knowledge representation. Yet, the application of graph methodology is elusive due to the sheer number and complexity of knowledge sources. In addition, semantic incompatibilities hinder efforts to harmonize and integrate across these diverse sources. As part of The Biomedical Translator Consortium, we have developed a knowledge graph-based question-answering system designed to augment human reasoning and accelerate translational scientific discovery: the Translator system. We have applied the Translator system to answer biomedical questions in the context of a broad array of diseases and syndromes, including Fanconi anemia, primary ciliary dyskinesia, multiple sclerosis, and others. A variety of collaborative approaches have been used to research and develop the Translator system. One recent approach involved the establishment of a monthly "Question-of-the-Month (QotM) Challenge" series. Herein, we describe the structure of the QotM Challenge; the six challenges that have been conducted to date on drug-induced liver injury, cannabidiol toxicity, coronavirus infection, diabetes, psoriatic arthritis, and ATP1A3-related phenotypes; the scientific insights that have been gleaned during the challenges; and the technical issues that were identified over the course of the challenges and that can now be addressed to foster further development of the prototype Translator system. We close with a discussion on Large Language Models such as ChatGPT and highlight differences between those models and the Translator system.

15.
ArXiv ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37904742

ABSTRACT

Recent studies at individual cell resolution have revealed phenotypic heterogeneity in nominally clonal tumor cell populations. The heterogeneity affects cell growth behaviors, which can result in departure from the idealized uniform exponential growth of the cell population. Here we measured the stochastic time courses of growth of an ensemble of populations of HL60 leukemia cells in cultures, starting with distinct initial cell numbers to capture a departure from the uniform exponential growth model for the initial growth ("take-off"). Despite being derived from the same cell clone, we observed significant variations in the early growth patterns of individual cultures with statistically significant differences in growth dynamics, which could be explained by the presence of inter-converting subpopulations with different growth rates, and which could last for many generations. Based on the hypothesis of existence of multiple subpopulations, we developed a branching process model that was consistent with the experimental observations.

16.
Nutrients ; 15(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37836434

ABSTRACT

Tryptophan, an essential dietary amino acid, is metabolized into various metabolites within both gut microbiota and tissue cells. These metabolites have demonstrated potential associations with panvascular diseases. However, the specific relationship between tryptophan metabolism, particularly Indole-3-aldehyde (3-IAId), and the occurrence of aortic dissection (AD) remains unclear. 3-IAId showed an inverse association with advanced atherosclerosis, a risk factor for AD. In this study, we employed a well-established ß-aminopropionitrile monofumarate (BAPN)-induced AD murine model to investigate the impact of 3-IAId treatment on the progression of AD. Our results reveal compelling evidence that the administration of 3-IAId significantly mitigated aortic dissection and rupture rates (BAPN + 3-IAId vs. BAPN, 45% vs. 90%) and led to a notable reduction in mortality rates (BAPN + 3-IAId vs. BAPN, 20% vs. 55%). Furthermore, our study elucidates that 3-IAId exerts its beneficial effects by inhibiting the phenotype transition of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic state. It also mitigates extracellular matrix degradation, attenuates macrophage infiltration, and suppresses the expression of inflammatory cytokines, collectively contributing to the attenuation of AD development. Our findings underscore the potential of 3-IAId as a promising intervention strategy for the prevention of thoracic aortic dissection, thus providing valuable insights into the realm of vascular disease management.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Dissection , Gastrointestinal Microbiome , Mice , Humans , Animals , Aortic Aneurysm, Thoracic/chemically induced , Aortic Aneurysm, Thoracic/prevention & control , Tryptophan/adverse effects , Aminopropionitrile/adverse effects , Disease Models, Animal
17.
Bioinform Adv ; 3(1): vbad150, 2023.
Article in English | MEDLINE | ID: mdl-37886712

ABSTRACT

Summary: Gene set scoring (or enrichment) is a common dimension reduction task in bioinformatics that can be focused on the differences between groups or at the single sample level. Gene sets can represent biological functions, molecular pathways, cell identities, and more. Gene set scores are context dependent values that are useful for interpreting biological changes following experiments or perturbations. Single sample scoring produces a set of scores, one for each member of a group, which can be analyzed with statistical models that can include additional clinically important factors such as gender or age. However, the sparsity and technical noise of single-cell expression measures create difficulties for these methods, which were originally designed for bulk expression profiling (microarrays, RNAseq). This can be greatly remedied by first applying a smoothing transformation that shares gene measure information within transcriptomic neighborhoods. In this work, we use the nearest neighbor graph of cells for matrix smoothing to produce high quality gene set scores on a per-cell, per-group, level which is useful for visualization and statistical analysis. Availability and implementation: The gssnng software is available using the python package index (PyPI) and works with Scanpy AnnData objects. It can be installed using "pip install gssnng." More information and demo notebooks: see https://github.com/IlyaLab/gssnng.

18.
Mol Biol Cell ; 34(12): ar114, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37610836

ABSTRACT

The nucleolus is a multifunctional nuclear body. To tease out the roles of nucleolar structure without resorting to the use of multi-action drugs, we knocked down the RNA polymerase I subunit RPA194 in HeLa cells by siRNA. Loss of RPA194 resulted in nucleolar-structural segregation and effects on both nucleolus-proximal and distal-nuclear components. The perinucleolar compartment was disrupted, centromere clustering around nucleoli was significantly reduced, and the intranuclear locations of specific genomic loci were altered. Moreover, Cajal bodies, distal from nucleoli, underwent morphological and some compositional changes. In comparison, when the preribosomal RNA-processing factor, UTP4, was knocked down, neither nucleolar segregation nor the intranuclear effects were observed, demonstrating that the changes of nucleolar proximal and distal nuclear domains in RPA194 knockdown cells unlikely arise from a cessation of ribosome synthesis, rather from the consequence of nucleolar-structure alteration. These findings point to a commutative system that links nucleolar structure to the maintenance and spatial organization of certain nuclear domains and genomic loci.


Subject(s)
Cell Nucleolus , Cell Nucleus , Humans , HeLa Cells , RNA Polymerase I
19.
bioRxiv ; 2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37333362

ABSTRACT

Esophageal adenocarcinoma arises from Barrett's esophagus, a precancerous metaplastic replacement of squamous by columnar epithelium in response to chronic inflammation. Multi-omics profiling, integrating single-cell transcriptomics, extracellular matrix proteomics, tissue-mechanics and spatial proteomics of 64 samples from 12 patients' paths of progression from squamous epithelium through metaplasia, dysplasia to adenocarcinoma, revealed shared and patient-specific progression characteristics. The classic metaplastic replacement of epithelial cells was paralleled by metaplastic changes in stromal cells, ECM and tissue stiffness. Strikingly, this change in tissue state at metaplasia was already accompanied by appearance of fibroblasts with characteristics of carcinoma-associated fibroblasts and of an NK cell-associated immunosuppressive microenvironment. Thus, Barrett's esophagus progresses as a coordinated multi-component system, supporting treatment paradigms that go beyond targeting cancerous cells to incorporating stromal reprogramming.

20.
J Biol Chem ; 299(8): 104951, 2023 08.
Article in English | MEDLINE | ID: mdl-37356716

ABSTRACT

The application of genetic and biochemical techniques in yeast has informed our knowledge of transcription in mammalian cells. Such systems have allowed investigators to determine whether a gene was essential and to determine its function in rDNA transcription. However, there are significant differences in the nature of the transcription factors essential for transcription by Pol I in yeast and mammalian cells, and yeast RNA polymerase I contains 14 subunits while mammalian polymerase contains 13 subunits. We previously reported the adaptation of the auxin-dependent degron that enabled a combination of a "genetics-like" approach and biochemistry to study mammalian rDNA transcription. Using this system, we studied the mammalian orthologue of yeast RPA34.5, PAF49, and found that it is essential for rDNA transcription and cell division. The auxin-induced degradation of PAF49 induced nucleolar stress and the accumulation of P53. Interestingly, the auxin-induced degradation of AID-tagged PAF49 led to the degradation of its binding partner, PAF53, but not vice versa. A similar pattern of co-dependent expression was also found when we studied the non-essential, yeast orthologues. An analysis of the domains of PAF49 that are essential for rDNA transcription demonstrated a requirement for both the dimerization domain and an "arm" of PAF49 that interacts with PolR1B. Further, we demonstrate this interaction can be disrupted to inhibit Pol I transcription in normal and cancer cells which leads to the arrest of normal cells and cancer cell death. In summary, we have shown that both PAF53 and PAF49 are necessary for rDNA transcription and cell growth.


Subject(s)
Carrier Proteins , Nuclear Proteins , RNA Polymerase I , Saccharomyces cerevisiae , Animals , Humans , Mice , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Indoleacetic Acids/metabolism , Mammals/metabolism , Nuclear Proteins/metabolism , Pol1 Transcription Initiation Complex Proteins/metabolism , RNA Polymerase I/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcription Factors/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...