Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 13(9)2023 08 30.
Article in English | MEDLINE | ID: mdl-37310929

ABSTRACT

Animals are able to adapt their behaviors to the environment. In order to achieve this, the nervous system plays integrative roles, such as perception of external signals, sensory processing, and behavioral regulations via various signal transduction pathways. Here genetic analyses of Caenorhabditis elegans (C. elegans) found that mutants of components of JNK and p38 mitogen-activated protein kinase (MAPK) signaling pathways, also known as stress-activated protein kinase (SAPK) signaling pathways, exhibit various types of defects in the learning of salt chemotaxis. C. elegans homologs of JNK MAPKKK and MAPKK, MLK-1 and MEK-1, respectively, are required for avoidance of salt concentrations experienced during starvation. In contrast, homologs of p38 MAPKKK and MAPKK, NSY-1 and SEK-1, respectively, are required for high-salt chemotaxis after conditioning. Genetic interaction analyses suggest that a JNK family MAPK, KGB-1, functions downstream of both signaling pathways to regulate salt chemotaxis learning. Furthermore, we found that the NSY-1/SEK-1 pathway functions in sensory neurons, ASH, ADF, and ASER, to regulate the learned high-salt chemotaxis. A neuropeptide, NLP-3, expressed in ASH, ADF, and ASER neurons, and a neuropeptide receptor, NPR-15, expressed in AIA interneurons that receive synaptic input from these sensory neurons, function in the same genetic pathway as NSY-1/SEK-1 signaling. These findings suggest that this MAPK pathway may affect neuropeptide signaling between sensory neurons and interneurons, thus promoting high-salt chemotaxis after conditioning.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Chemotaxis/physiology , MAP Kinase Signaling System , Signal Transduction/physiology , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Sodium Chloride/metabolism , MAP Kinase Kinase Kinases , Sensory Receptor Cells/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism
2.
Cell Tissue Res ; 390(2): 189-205, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36048302

ABSTRACT

Due to similarities in iodine concentrations and peroxidase activities, the thyroid in vertebrates is considered to originate from the endostyle of invertebrate chordates even though it is a glandular (mucus-producing) organ for aquatic suspension feeding. Among chordates with an endostyle, urochordates are useful evolutionary research models for the study of vertebrate traits. The ascidian Ciona intestinalis forms an endostyle with specific components of glandular- and thyroid-related elements, and molecular markers have been identified for these components. Since we previously examined a simple endostyle in the larvacean Oikopleura dioica, the expression of the thyroid-related transcription factor genes, Ciona Nkx2-1 and FoxE, was perturbed by TALEN-mediated gene knockout in the present study to elucidate the shared and/or divergent features of a complex ascidian endostyle. The knockout of Ciona Nkx2-1 and FoxE exerted different effects on the morphology of the developing endostyle. The knockout of Nkx2-1 eliminated the expression of both glandular and thyroidal differentiation marker genes, e.g., vWFL1, vWFL2, CiEnds1, TPO, and Duox, while that of FoxE eliminated the expression of the differentiation marker genes, TPO and CiEnds1. The supporting element-related expression of Pax2/5/8a, Pax2/5/8b, FoxQ1, and ß-tubulin persisted in the hypoplastic endostyles of Nkx2-1- and FoxE-knockout juveniles. Although the gene regulation of ascidian-specific CiEnds1 remains unclear, these results provide insights into the evolution of the vertebrate thyroid as well as the urochordate endostyle.


Subject(s)
Ciona intestinalis , Animals , Ciona intestinalis/genetics , Ciona intestinalis/metabolism , Thyroid Gland/metabolism , Amino Acid Sequence , Gene Expression Regulation , Vertebrates
SELECTION OF CITATIONS
SEARCH DETAIL
...