Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 665: 399-412, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38537588

ABSTRACT

Photocatalytic selective oxidation plays an important role in developing green chemistry. However, it is challenging to design an efficient photocatalyst for controlling the selectivity of photocatalytic oxidation reaction and exploring its detailed mechanism. Here, we synthesized three conjugated microporous polymers (CMPs) with D-A structures, named M-SATE-CMPs (MZn, Cu and Co), with different d-band centers based on different metal centers, resulting in the discrepancy in adsorption and activation capacities for the reactants, which produces the selectivity of ß-keto esters being catalyzed into α-hydroperoxide ß-keto esters (ROOH) or to α-hydroxyl ß-keto esters (ROH). Density functional theory (DFT) calculations also demonstrate that the adsorption and activation capacities of the metal active centers in M-SATE-CMPs (MZn, Cu and Co) for ROOH are the key factors to influence the photocatalytic selective oxidation of ß-keto ester. This study provides a promising strategy for designing a metallaphotoredox catalyst whose photocatalytic selectivity depends on the d-band center of metal site in the catalyst.

2.
Cancer Cell Int ; 24(1): 59, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321552

ABSTRACT

Peroxiredoxin 3 (PRDX3), a mitochondrial hydrogen peroxide scavenger, is known to be upregulated during tumorigenesis and cancer progression. In this study, we provide evidence for the first time that PRDX3 could regulate cellular signaling pathways associated with Matrix Metalloproteinase-1 (MMP-1) expression and activity in breast cancer progression. We show that shRNA-mediated gene silencing of PRDX3 inhibits cell migration and invasion in two triple-negative breast cancer cell lines. Reciprocal experiments show that PRDX3 overexpression promotes invasion and migration of the cancer cells, processes which are important in the metastatic cascade. Notably, this phenomenon may be attributed to the activation of MMP-1, which is observed to be upregulated by PRDX3 in the breast cancer cells. Moreover, immunohistochemical staining of breast cancer tissues revealed a positive correlation between PRDX3 and MMP-1 expression in both epithelial and stromal parts of the tissues. Further pathway reporter array and luciferase assay demonstrated that activation of ERK signaling is responsible for the transcriptional activation of MMP-1 in PRDX3-overexpressed cells. These findings suggest that PRDX3 could mediate cancer spread via ERK-mediated activation of MMP-1. Targeted inhibition of ERK signaling may be able to inhibit tumor metastasis in triple-negative breast cancer.

3.
Oncol Lett ; 23(4): 117, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35261631

ABSTRACT

Breast cancer is among the most frequently diagnosed cancer types and the leading cause of cancer-related death in women. The mortality rate of patients with breast cancer is currently increasing, perhaps due to a lack of early screening tools. In the present study, using The Cancer Genome Atlas (TCGA) breast cancer dataset (n=883), it was determined that methylation of the protocadherin ß15 (PCDHB15) promoter was higher in breast cancer samples than that in normal tissues. A negative association between promoter methylation and expression of PCDHB15 was observed in the TCGA dataset and breast cancer cell lines. In TCGA cohort, lower PCDHB15 expression was associated with shorter relapse-free survival times. Treatment with the DNA methyltransferase inhibitor restored PCDHB15 expression in a breast cancer cell line; however, overexpression of PCDHB15 was shown to suppress colony formation. PCDHB15 methylation detected in circulating cell-free DNA (cfDNA) isolated from serum samples was higher in patients with breast cancer (40.8%) compared with that in patients with benign tumors (22.4%). PCDHB15 methylation was not correlated with any clinical parameters. Taken together, PCDHB15 is a potential tumor suppressor in cases of breast cancer, which can be epigenetically silenced via promoter methylation. PCDHB15 methylation using cfDNA is a novel minimally invasive epigenetic biomarker for the diagnosis and prognosis of breast cancer.

4.
PLoS One ; 16(4): e0250499, 2021.
Article in English | MEDLINE | ID: mdl-33886682

ABSTRACT

Gastric cancer is one of the leading causes of cancer death worldwide. Previous studies demonstrated that activation of STAT3 is crucial for the development and progression of gastric cancer. However, the role of STAT3 in neuronal related gene methylation in gastric cancer has never been explored. In this study, by using DNA methylation microarray, we identified a potential STAT3 target, C11orf87, showing promoter hypomethylation in gastric cancer patients with lower STAT3 activation and AGS gastric cancer cell lines depleted with STAT3 activation. Although C11orf87 methylation is independent of its expression, ectopic expression of a constitutive activated STAT3 mutant upregulated its expression in gastric cancer cell line. Further bisulfite pyrosequencing demonstrated a progressive increase in DNA methylation of this target in patient tissues from gastritis, intestinal metaplasia, to gastric cancer. Intriguingly, patients with higher C11orf87 methylation was associated with better survival. Furthermore, hypermethylation of C11orf87 was also frequently observed in other GI cancers, as compared to their adjacent normal tissues. These results suggested that C11orf87 methylation may serve as a biomarker for diagnosis and prognosis of GI cancers, including gastric cancer. We further postulated that constitutive activation of STAT3 might be able to epigenetically silence C11orf87 as a possible negative feedback mechanism to protect the cells from the overactivation of STAT3. Targeted inhibition of STAT3 may not be appropriate in gastric cancer patients with promoter hypermethylation of C11orf87.


Subject(s)
DNA Methylation/genetics , Epigenome/genetics , Gastrointestinal Neoplasms/genetics , Open Reading Frames/genetics , STAT3 Transcription Factor/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Cell Line, Tumor , Disease-Free Survival , Epigenesis, Genetic , Female , Gastrointestinal Neoplasms/pathology , Humans , Male , Middle Aged , Prognosis , Promoter Regions, Genetic/genetics
5.
Cancer Cell Int ; 21(1): 226, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33874979

ABSTRACT

BACKGROUND: Urothelial carcinoma (UC) is the second most common malignancy of the urinary system with high rate of recurrence, UC patients therefore needed to be treated with surgery followed by chemotherapy. Development of novel therapeutics with minimal side-effect is an urgent issue. Our previous study showed that cyproheptadine (CPH), an anti-histamine, exhibited antitumor activity in UC in vitro and in an xenograft model. However, the molecular mechanism of how CPH inhibits tumor progression is not fully understood. METHODS: Genes that were upregulated after treatment with CPH in UC cells, were examined by RNA-Seq. Real-time quantitative PCR (RT-qPCR) was employed to detect IRF6 expression while COBRA assay and bisulphite pyrosequencing were used to examine promoter methylation of IRF6. Enrichment of total H3K27 acetylation and H3K4 mono-methylation were detected by western blotting. Colony formation and flow cytometry were used to examine proliferation and apoptosis in UC cells overexpressed or depleted with IRF6. Nude mice xenograft model was used to examine the effect of IRF6 in UC. RESULTS: Our result showed that several genes, including IRF6 were upregulated after treatment with CPH in BFTC905 UC cells. Further experiments found that treatment of CPH could restore the expression of IRF6 in several other UC cell lines, probably due to promoter hypomethylation and enrichment of H3K27 acetylation and H3K4 mono-methylation. These results may be due to the fact that CPH could alter the activity, but not the expression of epigenetic modifiers. Finally, re-expression of IRF6 in UC inhibited tumor growth in vitro and in an xenograft mouse model, by inducing apoptosis. CONCLUSION: In conclusion, our results suggested that CPH may be an epigenetic modifier, modulating the expression of the potential tumor suppressor IRF6, in inhibiting tumor growth in UC.

6.
Front Cardiovasc Med ; 7: 56, 2020.
Article in English | MEDLINE | ID: mdl-32457918

ABSTRACT

Use of anthracyclines such as doxorubicin (DOX), for the treatment of cancer, is known to induce cardiotoxicity, begetting numerous evaluations of this adverse effect. This review emphasizes the mechanism of how consideration of DOX-induced cardiotoxicity is important for the development of cardioprotective agents. As DOX is involved in mitochondrial dysfunction, enzymes involved in epigenetic modifications that use mitochondrial metabolite as substrate are most likely to be affected. Therefore, this review article focuses on the fact that epigenetic modifications, namely, DNA methylation, histone modifications, and noncoding RNA expression, contribute to DOX-associated cardiotoxicity. Early interventions needed for patients undergoing chemotherapy, to treat or prevent heart failure, would, overall, improve the survival, and quality of life of cancer patients. These epigenetic modifications can either be used as molecular markers for cancer prognosis or represent molecular targets to attenuate DOX-induced cardiotoxicity in cancer patients.

7.
Cancers (Basel) ; 11(10)2019 Sep 28.
Article in English | MEDLINE | ID: mdl-31569404

ABSTRACT

MicroRNAs (miRNAs) have been shown to play a crucial role in the progression of human cancers, including urothelial carcinoma (UC), the sixth-most common cancer in the world. Among them, miR-34a has been implicated in the regulation of cancer stem cells (CSCs); however, its role in UC has yet to be fully elucidated. In this study, bioinformatics and experimental analysis confirmed that miR-34a targets CD44 (a CSC surface marker) and c-Myc (a well-known cell cycle regulator) in UC. We found that, surprisingly, most UC cell lines and patient samples did express miR-34a, although epigenetic silencing by promoter hypermethylation of miR-34a expression was observed only in UMUC3 cells, and a subset of patient samples. Importantly, overexpression of c-Myc, a frequently amplified oncogene in UC, was shown to upregulate CD44 expression through a competing endogenous RNA (ceRNA) mechanism, such that overexpression of the c-Myc 3'UTR upregulated CD44, and vice versa. Importantly, we observed a positive correlation between the expression of c-Myc and CD44 in clinical samples obtained from UC patients. Moreover, overexpression of a dominant-negative p53 mutant downregulated miR-34a, but upregulated c-Myc and CD44, in UC cell lines. Functionally, the ectopic expression of miR-34a was shown to significantly suppress CD44 expression, and subsequently, suppression of cell growth and invasion capability, while also reducing chemoresistance. In conclusion, it appears that aberrant promoter methylation, and c-Myc-mediated ceRNA mechanisms, may attenuate the function of miR-34a, in UC. The tumor suppressive role of miR-34a in controlling CSC phenotypes in UC deserves further investigation.

8.
J Pharmacol Sci ; 139(4): 275-279, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30928089

ABSTRACT

OBJECTIVE: This study aims to investigate the prevalence and types of drug resistance mutations among patients failing first-line antiretroviral therapy (ART). METHODS: Plasma samples from 112 patients with human immunodeficiency virus-1 (HIV-1) were collected for virus RNA extract and gene amplification. The mutations related to drug resistance were detected and the incidence was statistically analyzed, and the drug resistance rate against common drugs was also evaluated. RESULTS: 103 cases were successfully amplified, and the main drug resistance mutations in the reverse transcriptase (RT) region were M184V (50.49%), K103N (28.16%), Y181C (25.24%), and K65R (27.18%), while no drug main resistance mutation was found in the protease (PR) region. The incidence of drug resistance mutations was significantly different among patients with different ages, routes of infection, duration of treatment, initial ART regimens and viral load. The drug resistance rate to the common drugs was assessed, including Efavirenz (EFV, 71.84%), Nevirapine (NVP, 74.76%), Lamivudine (3TC, 66.02%), Zidovudine (AZT, 4.85%), Stavudine (D4T, 16.51%), and Tenofovir (TDF, 21.36%). CONCLUSION: The drug resistance mutations to NRTIs and NNRTIs are complex and highly prevalent, which was the leading cause of first-line ART failure. This study provides significant theoretical support for developing the second-line and third-line therapeutic schemes.


Subject(s)
Antiretroviral Therapy, Highly Active , Antiviral Agents/pharmacology , Benzoxazines/pharmacology , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/drug effects , HIV-1/genetics , Mutation , Nevirapine/pharmacology , Adult , Alkynes , Cyclopropanes , Female , Humans , Incidence , Lamivudine/pharmacology , Male , Middle Aged , Stavudine/pharmacology , Tenofovir/pharmacology , Treatment Failure , Viral Load , Zidovudine/pharmacology
9.
Nat Commun ; 10(1): 335, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30659195

ABSTRACT

Hepatocellular carcinomas (HCC) exhibit distinct promoter hypermethylation patterns, but the epigenetic regulation and function of transcriptional enhancers remain unclear. Here, our affinity- and bisulfite-based whole-genome sequencing analyses reveal global enhancer hypomethylation in human HCCs. Integrative epigenomic characterization further pinpoints a recurrent hypomethylated enhancer of CCAAT/enhancer-binding protein-beta (C/EBPß) which correlates with C/EBPß over-expression and poorer prognosis of patients. Demethylation of C/EBPß enhancer reactivates a self-reinforcing enhancer-target loop via direct transcriptional up-regulation of enhancer RNA. Conversely, deletion of this enhancer via CRISPR/Cas9 reduces C/EBPß expression and its genome-wide co-occupancy with BRD4 at H3K27ac-marked enhancers and super-enhancers, leading to drastic suppression of driver oncogenes and HCC tumorigenicity. Hepatitis B X protein transgenic mouse model of HCC recapitulates this paradigm, as C/ebpß enhancer hypomethylation associates with oncogenic activation in early tumorigenesis. These results support a causal link between aberrant enhancer hypomethylation and C/EBPß over-expression, thereby contributing to hepatocarcinogenesis through global transcriptional reprogramming.


Subject(s)
Carcinogenesis/genetics , DNA Methylation , Liver Neoplasms/genetics , Regulatory Sequences, Nucleic Acid/genetics , Animals , CCAAT-Enhancer-Binding Protein-beta/metabolism , Carcinoma, Hepatocellular/genetics , Cell Cycle Proteins , Clustered Regularly Interspaced Short Palindromic Repeats , Demethylation , Epigenesis, Genetic , Gene Deletion , Gene Expression Regulation, Neoplastic , Humans , Liver , Mice , Mice, Transgenic , Nuclear Proteins/metabolism , Prognosis , Promoter Regions, Genetic , Trans-Activators , Transcription Factors/metabolism , Transcriptional Activation , Up-Regulation , Viral Regulatory and Accessory Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...