Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters










Publication year range
1.
J Xray Sci Technol ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38788116

ABSTRACT

Cardiovascular disease (CVD), a global health concern, particularly coronary artery disease (CAD), poses a significant threat to well-being. Seeking safer and cost-effective diagnostic alternatives to invasive coronary angiography, noninvasive coronary computed tomography angiography (CCTA) gains prominence. This study employed OpenFOAM, an open-source Computational Fluid Dynamics (CFD) software, to analyze hemodynamic parameters in coronary arteries with serial stenoses. Patient-specific three-dimensional (3D) models from CCTA images offer insights into hemodynamic changes. OpenFOAM breaks away from traditional commercial software, validated against the FDA benchmark nozzle model for reliability. Applying this refined methodology to seventeen coronary arteries across nine patients, the study evaluates parameters like fractional flow reserve computed tomography simulation (FFRCTS), fluid velocity, and wall shear stress (WSS) over time. Findings include FFRCTS values exceeding 0.8 for grade 0 stenosis and falling below 0.5 for grade 5 stenosis. Central velocity remains nearly constant for grade 1 stenosis but increases 3.4-fold for grade 5 stenosis. This research innovates by utilizing OpenFOAM, departing from previous reliance on commercial software. Combining qualitative stenosis grading with quantitative FFRCTS and velocity measurements offers a more comprehensive assessment of coronary artery conditions. The study introduces 3D renderings of wall shear stress distribution across stenosis grades, providing an intuitive visualization of hemodynamic changes for valuable insights into coronary stenosis diagnosis.

2.
Environ Toxicol ; 39(6): 3389-3399, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38445457

ABSTRACT

Breast cancer stands as the predominant malignancy and primary cause of cancer-related mortality among females globally. Approximately 25% of breast cancers exhibit HER2 overexpression, imparting a more aggressive tumor phenotype and correlating with poor prognoses. Patients with metastatic breast cancer receiving HER2 tyrosine kinase inhibitors (HER2 TKIs), such as Lapatinib, develop acquired resistance within a year, posing a critical challenge in managing this disease. Here, we explore the potential of Artemisia argyi, a Chinese herbal medicine known for its anti-cancer properties, in mitigating HER2 TKI resistance in breast cancer. Analysis of the Cancer Genome Atlas (TCGA) revealed diminished expression of transmembrane serine protease 2 (TMPRSS2), a subfamily of membrane proteolytic enzymes, in breast cancer patients, correlating with unfavorable outcomes. Intriguingly, lapatinib-responsive patients exhibited higher TMPRSS2 expression. Our study unveiled that the compounds from Artemisia argyi, eriodictyol, and umbelliferone could inhibit the growth of lapatinib-resistant HER2-positive breast cancer cells. Mechanistically, they suppressed HER2 kinase activation by enhancing TMPRSS2 activity. Our findings propose TMPRSS2 as a critical determinant in lapatinib sensitivity, and Artemisia argyi emerges as a potential agent to overcome lapatinib via activating TMPRSS2 in HER2-positive breast cancer. This study not only unravels the molecular mechanisms driving cell death in HER2-positive breast cancer cells induced by Artemisia argyi but also lays the groundwork for developing novel inhibitors to enhance therapy outcomes.


Subject(s)
Artemisia , Breast Neoplasms , Drug Resistance, Neoplasm , Lapatinib , Plant Extracts , Receptor, ErbB-2 , Serine Endopeptidases , Lapatinib/pharmacology , Lapatinib/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Humans , Drug Resistance, Neoplasm/drug effects , Artemisia/chemistry , Female , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Cell Line, Tumor , Plant Extracts/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
3.
Psychiatry Investig ; 21(2): 159-164, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38433414

ABSTRACT

OBJECTIVE: The Penn Alcohol Craving Scale (PACS) is a five-item, single-dimension questionnaire that is used to measure a patient's alcohol craving. We sought to develop the Chinese version of the PACS (PACS-C) and assess its reliability and validity. METHODS: A total of 160 Taiwanese patients with alcohol use disorder were enrolled in this study. The internal consistency and concurrent validity of the PASC-C with the visual analogue scale (VAS) for craving, the Yale-Brown Obsessive Compulsive Scale for heavy drinking (YBOCS-hd), and the Severity of Alcohol Dependence Questionnaire (SADQ) were assessed. The test-retest reliability of the PASC-C was evaluated 1 day after the baseline measurements. Confirmatory factor analysis (CFA) was performed to examine the psychometric properties of the PACS-C. RESULTS: The PACS-C exhibited good internal consistency (Cronbach's α=0.95) and test-retest reliability (r=0.97). This scale showed high correlations with the VAS (r=0.81) and YBOCS-hd (r=0.81 and 0.79 for the obsession and compulsion subscales, respectively), and moderate correlation with the SADQ-C (r=0.47). Furthermore, CFA results revealed that the PACS-C had good fit indices under various models. CONCLUSION: The PACS-C appears to be a reliable and valid tool for assessing alcohol craving in patients with alcohol use disorder in Taiwan.

4.
Int J Biol Sci ; 19(16): 5174-5186, 2023.
Article in English | MEDLINE | ID: mdl-37928274

ABSTRACT

Chondrosarcoma is the second most common type of bone cancer. At present, the most effective clinical course of action is surgical resection. Cisplatin is the chemotherapeutic medication most widely used for the treatment of chondrosarcoma; however, its effectiveness is severely hampered by drug resistance. In the current study, we compared cisplatin-resistant chondrosarcoma SW1353 cells with their parental cells via RNA sequencing. Our analysis revealed that glutamine metabolism is highly activated in resistant cells but glucose metabolism is not. Amphiregulin (AR), a ligand of the epidermal growth factor receptor, enhances glutamine metabolism and supports cisplatin resistance in human chondrosarcoma by promoting NADPH production and inhibiting reactive oxygen species (ROS) accumulation. The MEK, ERK, and NrF2 signaling pathways were shown to regulate AR-mediated alanine-serine-cysteine transporter 2 (ASCT2; also called SLC1A5) and glutaminase (GLS) expression as well as glutamine metabolism in cisplatin-resistant chondrosarcoma. The knockdown of AR expression in cisplatin-resistant chondrosarcoma cells was shown to reduce the expression of SLC1A5 and GLS in vivo. These results indicate that AR and glutamine metabolism are worth pursuing as therapeutic targets in dealing with cisplatin-resistant human chondrosarcoma.


Subject(s)
Bone Neoplasms , Chondrosarcoma , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Amphiregulin/genetics , Glutamine , Drug Resistance, Neoplasm/genetics , Chondrosarcoma/drug therapy , Chondrosarcoma/genetics , Cell Line, Tumor , Minor Histocompatibility Antigens , Amino Acid Transport System ASC
5.
Cell Biosci ; 13(1): 118, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37381062

ABSTRACT

BACKGROUND: Artemisia argyi (A. argyi), also called Chinese mugwort, has been widely used to control pandemic diseases for thousands of years since ancient China due to its anti-microbial infection, anti-allergy, and anti-inflammation activities. Therefore, the potential of A. argyi and its constituents in reducing the infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was investigated in this study. RESULTS: Among the phytochemicals in A. argyi, eriodictyol and umbelliferone were identified to target transmembrane serine protease 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2) proteins, the essential factors for the cellular entry of SARS-CoV-2, in both FRET-based enzymatic assays and molecular docking analyses. These two ingredients of A. argyi suppressed the infection of ACE2-expressed HEK-293 T cells with lentiviral-based pseudo-particles (Vpp) expressing wild-type and variants of SARS-CoV-2 spike (S) protein (SARS-CoV-2 S-Vpp) via interrupting the interaction between S protein and cellular receptor ACE2 and reducing the expressions of ACE2 and TMPRSS2. Oral administration with umbelliferone efficiently prevented the SARS-CoV-2 S-Vpp-induced inflammation in the lung tissues of BALB/c mice. CONCLUSIONS: Eriodictyol and umbelliferone, the phytochemicals of Artemisia argyi, potentially suppress the cellular entry of SARS-CoV-2 by preventing the protein binding activity of the S protein to ACE2.

6.
Cells ; 12(5)2023 03 03.
Article in English | MEDLINE | ID: mdl-36899935

ABSTRACT

Neovascular age-related macular degeneration (AMD) is described as abnormal angiogenesis in the retina and the leaking of fluid and blood that generates a huge, dark, blind spot in the center of the visual field, causing severe vision loss in over 90% of patients. Bone marrow-derived endothelial progenitor cells (EPCs) contribute to pathologic angiogenesis. Gene expression profiles downloaded from the eyeIntegration v1.0 database for healthy retinas and retinas from patients with neovascular AMD identified significantly higher levels of EPC-specific markers (CD34, CD133) and blood vessel markers (CD31, VEGF) in the neovascular AMD retinas compared with healthy retinas. Melatonin is a hormone that is mainly secreted by the pineal gland, and is also produced in the retina. Whether melatonin affects vascular endothelial growth factor (VEGF)-induced EPC angiogenesis in neovascular AMD is unknown. Our study revealed that melatonin inhibits VEGF-induced stimulation of EPC migration and tube formation. By directly binding with the VEGFR2 extracellular domain, melatonin significantly and dose-dependently inhibited VEGF-induced PDGF-BB expression and angiogenesis in EPCs via c-Src and FAK, NF-κB and AP-1 signaling. The corneal alkali burn model demonstrated that melatonin markedly inhibited EPC angiogenesis and neovascular AMD. Melatonin appears promising for reducing EPC angiogenesis in neovascular AMD.


Subject(s)
Endothelial Progenitor Cells , Melatonin , Wet Macular Degeneration , Humans , Angiogenesis Inhibitors , Vascular Endothelial Growth Factor A , Visual Acuity
7.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 11): 378-385, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36322423

ABSTRACT

Bacterial capsular polysaccharides provide protection against environmental stress and immune evasion from the host immune system, and are therefore considered to be attractive therapeutic targets for the development of anti-infectious reagents. Here, we focused on CapG, one of the key enzymes in the synthesis pathway of capsular polysaccharides type 5 (CP5) from the opportunistic pathogen Staphylococcus aureus. SaCapG catalyses the 2-epimerization of UDP-N-acetyl-D-talosamine (UDP-TalNAc) to UDP-N-acetyl-D-fucosamine (UDP-FucNAc), which is one of the nucleotide-activated precursors for the synthesis of the trisaccharide repeating units of CP5. Here, the cloning, expression and purification of recombinant SaCapG are reported. After extensive efforts, single crystals of SaCapG were successfully obtained which belonged to space group C2 and exhibited unit-cell parameters a = 302.91, b = 84.34, c = 145.09 Å, ß = 110.65°. The structure was solved by molecular replacement and was refined to 3.2 Šresolution. The asymmetric unit revealed a homohexameric assembly of SaCapG, which was consistent with gel-filtration analysis. Structural comparison with UDP-N-acetyl-D-glucosamine 2-epimerase from Methanocaldococcus jannaschii identified α2, the α2-α3 loop and α10 as a gate-regulated switch controlling substrate entry and/or product release.


Subject(s)
Polysaccharides, Bacterial , Staphylococcus aureus , Crystallography, X-Ray , Polysaccharides, Bacterial/chemistry , Methanocaldococcus , Uridine Diphosphate
8.
J Adv Res ; 41: 77-87, 2022 11.
Article in English | MEDLINE | ID: mdl-36328755

ABSTRACT

INTRODUCTION: Cigarette smoking is the main risk factor for lung cancer. MSCs in the TME promoting tumor angiogenesis, growth, and metastasis. SIBLING proteins enable cancer cells to extend, invade and metastasize. OBJECTIVES: Cigarette smoke promotes the progression and metastasis of lung cancer, although how this occurs is poorly understood. We evaluated the impact of whether cigarette smoking motivates SIBLING protein expression and is involved in MSC-mediated lung tumor metastasis. METHODS: We investigated the expression of OPN in the Gene Expression Omnibus (GEO) databases and confirmed the results by immunohistochemistry (IHC), qPCR and Western blotting (WB) of lung cancer cells and tissues. The effect of OPN on the recruitment and adhesion of mesenchymal stem cells (MSCs) to lung cancer cells and lung cancers metastasis was investigated by Transwell, adhesion assays. A series of in vitro and in vivo experiments were conducted to demonstrate the mechanisms by which OPN modulates recruitment and adhesion of MSCs to lung cancer cells and lung cancer metastasis. RESULTS: Cigarette smoke extract (CSE) and benzo[α]pyrene (B[α]P) increased levels of OPN expression and facilitated the recruitment and adhesion of MSCs to lung cancer cells via JAK2/STAT3 signaling. We also observed that OPN promotes tumor-associated MSC (TA-MSC) formation through the OPN receptor (integrins αvß1, αvß3, αvß5 or CD44), inducing lung cancer cell migration and invasion. In an orthotopic mouse model of lung cancer, increases in OPN expression promoted by cigarette smoke upregulated MSC recruitment and facilitated lung cancer metastasis. Knockdown of OPN expression inhibited cigarette smoke-induced lung cancer metastasis in vivo. CONCLUSION: Cigarette smoke increases OPN expression through the JAK2/STAT3 signaling pathway to attract MSC cell recruitment and promote lung cancer metastasis. Our findings offer important insights into how lung cancer metastasis develops in smokers.


Subject(s)
Cigarette Smoking , Lung Neoplasms , Mesenchymal Stem Cells , Mice , Animals , Osteopontin/genetics , Osteopontin/metabolism , Osteopontin/pharmacology , Cigarette Smoking/adverse effects , Lung Neoplasms/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Signal Transduction , Nicotiana/metabolism , Neoplastic Processes
9.
Food Nutr Res ; 662022.
Article in English | MEDLINE | ID: mdl-35783555

ABSTRACT

Background: Antcin K, an extract of Antrodia cinnamomea (a medicinal mushroom endemic to Taiwan commonly used in Chinese medicine preparations), inhibits proinflammatory cytokine production and angiogenesis in human rheumatoid arthritis synovial fibroblasts (RASFs), major players in RA disease. Antcin K also inhibits disease activity in mice with collagen-induced arthritis (CIA). Up until now, the effects of Antcin K upon cell adhesion molecules (CAMs) were unknown. Methods: RA and healthy synovial tissue samples (n = 10 in each group) were retrieved from the Gene Expression Omnibus (GEO) database (accession code: GDS5401) to compare CAM and monocyte marker expressions. In addition, synovial tissue samples from six RA patients and six patients undergoing arthroscopy for trauma/joint derangement (healthy controls) were subjected to immunohistochemical (IHC) analysis. mRNA and protein expression levels were analyzed in RASFs using RT-qPCR (Reverse transcription-quantitative polymerase chain reaction) and Western blot. RASFs were incubated with Antcin K and examined for monocyte adherence by fluorescence microscopy. Ankle joint tissue specimens from a CIA mouse model and healthy controls were stained with hematoxylin and eosin (H&E) and Safranin-O/Fast Green to examine histological changes and evidence of bone loss. IHC analysis determined levels of vascular cell adhesion molecule 1 (VCAM-1) and CD11b in CIA ankle tissue and clinical synovial tissue. Results: Levels of VCAM-1 expression were higher in the GEO database specimens and the study's clinical samples of RA synovial tissue compared with the healthy specimens. Antcin K dose-dependently inhibited VCAM-1 expression and monocyte adhesion in RASFs. Antcin K also significantly inhibited levels of VCAM-1 and monocyte CD11b expression in CIA tissue. These effects appeared to be mediated by MEK1/2-ERK, p38, and AP-1 signaling. Conclusions: Antcin K seems promising for the treatment of RA and deserves further investigations.

10.
Nutrients ; 14(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35807786

ABSTRACT

Osteoarthritis (OA) is an age-related disorder that affects the joints and causes functional disability. Hericium erinaceus is a large edible mushroom with several known medicinal functions. However, the therapeutic effects of H. erinaceus in OA are unknown. In this study, data from Sprague-Dawley rats with knee OA induced by anterior cruciate ligament transection (ACLT) indicated that H. erinaceus mycelium improves ACLT-induced weight-bearing asymmetry and minimizes pain. ACLT-induced increases in articular cartilage degradation and bone erosion were significantly reduced by treatment with H. erinaceus mycelium. In addition, H. erinaceus mycelium reduced the synthesis of proinflammatory cytokines interleukin-1ß and tumor necrosis factor-α in OA cartilage and synovium. H. erinaceus mycelium shows promise as a functional food in the treatment of OA.


Subject(s)
Cartilage, Articular , Osteoarthritis, Knee , Animals , Disease Models, Animal , Hericium , Mycelium , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/pathology , Rats , Rats, Sprague-Dawley
11.
Int J Mol Sci ; 23(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35628479

ABSTRACT

Animal coronaviruses (CoVs) have been identified to be the origin of Severe Acute Respiratory Syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and probably SARS-CoV-2 that cause severe to fatal diseases in humans. Variations of zoonotic coronaviruses pose potential threats to global human beings. To overcome this problem, we focused on the main protease (Mpro), which is an evolutionary conserved viral protein among different coronaviruses. The broad-spectrum anti-coronaviral drug, GC376, was repurposed to target canine coronavirus (CCoV), which causes gastrointestinal infections in dogs. We found that GC376 can efficiently block the protease activity of CCoV Mpro and can thermodynamically stabilize its folding. The structure of CCoV Mpro in complex with GC376 was subsequently determined at 2.75 Å. GC376 reacts with the catalytic residue C144 of CCoV Mpro and forms an (R)- or (S)-configuration of hemithioacetal. A structural comparison of CCoV Mpro and other animal CoV Mpros with SARS-CoV-2 Mpro revealed three important structural determinants in a substrate-binding pocket that dictate entry and release of substrates. As compared with the conserved A141 of the S1 site and P188 of the S4 site in animal coronaviral Mpros, SARS-CoV-2 Mpro contains N142 and Q189 at equivalent positions which are considered to be more catalytically compatible. Furthermore, the conserved loop with residues 46-49 in animal coronaviral Mpros has been replaced by a stable α-helix in SARS-CoV-2 Mpro. In addition, the species-specific dimerization interface also influences the catalytic efficiency of CoV Mpros. Conclusively, the structural information of this study provides mechanistic insights into the ligand binding and dimerization of CoV Mpros among different species.


Subject(s)
COVID-19 , Peptide Hydrolases , Animals , Coronavirus 3C Proteases , Dimerization , Dogs , Endopeptidases , Ligands , Peptide Hydrolases/chemistry , SARS-CoV-2
12.
J Food Biochem ; 46(7): e14108, 2022 07.
Article in English | MEDLINE | ID: mdl-35165902

ABSTRACT

Osteoarthritis (OA) is represented by the accumulation and adhesion of M1 macrophages into synovium tissues in the joint microenvironment and subsequent inflammatory response. Cordycerebroside A, a cerebroside compound isolated from Cordyceps militaris, exhibits anti-inflammatory activity, but has not yet been examined in M1 macrophages during OA disease. Our results indicate higher expression of M1 macrophage markers in synovium tissue from OA patients compared with normal healthy controls. Records from the Gene Expression Omnibus (GEO) data set and our clinic samples revealed higher levels of ICAM-1 (a critical adhesion molecule during OA disease) and CD86 (a M1 macrophage marker) in OA synovial tissue than in healthy tissue. The same effects were found in rats with OA induced by anterior cruciate ligament transaction (ACLT). We also found that cordycerebroside A inhibited ICAM-1 synthesis and antagonized M1 macrophage adhesion to OA synovial fibroblasts by inhibiting the ERK/AP-1 pathway. Thus, cordycerebroside A displayed novel anti-arthritic effects. PRACTICAL APPLICATIONS: Here we report a higher level of M1 macrophage markers and ICAM-1 in synovium tissue from OA patients compared with normal healthy controls by using GEO data set and our clinic samples. The same effects were revealed in rats with OA induced by ACLT. Cordycerebroside A significantly suppressed ICAM-1 production and diminished M1 macrophage adhesion to OA synovial fibroblasts. Therefore, cordycerebroside A exhibited novel anti-OA functions.


Subject(s)
Monocytes , Osteoarthritis , Animals , Fibroblasts/metabolism , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Rats , Synovial Membrane/metabolism
13.
Anticancer Res ; 42(2): 845-855, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35093882

ABSTRACT

BACKGROUND/AIM: The poor prognosis and chemoresistance of patients with triple-negative breast cancer (TNBC) urge the development of new therapeutic strategies. Snail mucus has shown its ability against inflammation, a process closely related to tumorigenesis, suggesting a potential anti-cancer activity. MATERIALS AND METHODS: The effect and mechanisms of snail mucus on cell viability were determined by IncuCyte Live-cell analysis and molecular biological methods. The anti-cancer fractions of snail mucus were isolated and identified by medium pressure liquid chromatography (MPLC) and nuclear magnetic resonance (NMR) spectrometry analysis. RESULTS: Snail mucus significantly decreased the viability of TNBC cells with relatively lower cytotoxicity to normal breast epithelial cells and enhanced their response to chemotherapy through activation of Fas signaling by suppressing nucleolin. Two peptide fractions have been identified as the anti-cancer ingredients of the snail mucus. CONCLUSION: Snail mucus can induce programmed cell death via the extrinsic apoptotic pathway and has therapeutic potential by achieving a chemo-sensitizing effect in TNBCs.


Subject(s)
Antineoplastic Agents/pharmacology , Mucus , Signal Transduction/drug effects , Snails , Triple Negative Breast Neoplasms/metabolism , fas Receptor/metabolism , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Humans , Mucus/chemistry , Mucus/metabolism , Snails/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology
14.
J Tradit Complement Med ; 12(1): 73-89, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34549024

ABSTRACT

BACKGROUND AND AIM: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells through the binding of the viral spike protein with human angiotensin-converting enzyme 2 (ACE2), resulting in the development of coronavirus disease 2019 (COVID-19). To date, few antiviral drugs are available that can effectively block viral infection. This study aimed to identify potential natural products from Taiwan Database of Extracts and Compounds (TDEC) that may prevent the binding of viral spike proteins with human ACE2 proteins. METHODS: The structure-based virtual screening was performed using the AutoDock Vina program within PyRX software, the binding affinities of compounds were verified using isothermal titration calorimetry (ITC), the inhibitions of SARS-CoV-2 viral infection efficacy were examined by lentivirus particles pseudotyped (Vpp) infection assay, and the cell viability was tested by 293T cell in MTT assay. RESULTS AND CONCLUSION: We identified 39 natural products targeting the viral receptor-binding domain (RBD) of the SARS-CoV-2 spike protein in silico. In ITC binding assay, dioscin, celastrol, saikosaponin C, epimedin C, torvoside K, and amentoflavone showed dissociation constant (K d) = 0.468 µM, 1.712 µM, 6.650 µM, 2.86 µM, 3.761 µM and 4.27 µM, respectively. In Vpp infection assay, the compounds have significantly and consistently inhibition with the 50-90% inhibition of viral infection efficacy. In cell viability, torvoside K, epimedin, amentoflavone, and saikosaponin C showed IC50 > 100 µM; dioscin and celastrol showed IC50 = 1.5625 µM and 0.9866 µM, respectively. These natural products may bind to the viral spike protein, preventing SARS-CoV-2 from entering cells. SECTION 1: Natural Products. TAXONOMY CLASSIFICATION BY EVISE: SARS-CoV-2, Structure-Based Virtual Screening, Isothermal Titration Calorimetry and Lentivirus Particles Pseudotyped (Vpp) Infection Assay, in silico and in vitro study.

15.
J Cell Physiol ; 237(1): 934-948, 2022 01.
Article in English | MEDLINE | ID: mdl-34472101

ABSTRACT

Targeting protein kinase C (PKC) family was found to repress the migration and resistance of non-small cell lung cancer cells to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). However, none of the PKC inhibitors has been approved for anticancer therapy yet due to the limited efficacy in clinical trials, and the underlying mechanisms remain unclear. l-lactic acidosis, a common condition comprising high l-lactate concentration and acidic pH in the tumor microenvironment, has been known to induce tumor metastasis and drug resistance. In this study, l-lactic acid was found to reverse the inhibitory effects of pan-PKC inhibitors GO6983 on PKC activity, cell migration, and EGFR-TKI resistance, but these effects were not affected by the modulators of lactate receptor GPR81. Interestingly, blockade of lactate transporters, monocarboxylate transporter-1 and -4 (MCT1 and MCT4), attenuated the intracellular level of GO6983, and its inhibitory effect on PKC activity, suggesting that lactic acid promotes the resistance to PKC inhibitors by competing for the uptake through these transporters rather than by activating its receptor, GPR81. Our findings explain the underlying mechanisms of the limited response of PKC inhibitors in clinical trials.


Subject(s)
Acidosis, Lactic , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Symporters , ErbB Receptors/metabolism , Humans , Lactic Acid/metabolism , Lung Neoplasms/drug therapy , Monocarboxylic Acid Transporters/metabolism , Protein Kinase Inhibitors/pharmacology , Symporters/metabolism , Tumor Microenvironment
16.
J Food Biochem ; 46(1): e14022, 2022 01.
Article in English | MEDLINE | ID: mdl-34841538

ABSTRACT

Antrodia cinnamomea is a well-known medicinal mushroom in Taiwan that exhibits anti-inflammatory biological activities. In rheumatoid arthritis (RA), chronic inflammation and angiogenesis driven by proinflammatory cytokines reflect the severity of the disease. Although biological treatments have improved the outlook for RA, no healing exists. Moreover, the available pharmacotherapies do not work for all patients and drug safety is a major consideration. Investigations into plant-based medicines hope to reveal better, more tolerable agents. We examined whether Antcin K, a phytosterol isolated from A. cinnamomea, has anti-angiogenic activity in RA. The GSE12021 gene dataset from the Gene Expression Omnibus (GEO) database was examined for levels of vascular endothelial growth factor (VEGF) expression in 10 RA and 10 osteoarthritis (OA) synovial tissue samples. In clinical samples, VEGF expression was analyzed by immunohistochemical staining and ELISA in normal and RA synovial tissue, as well as OA and RA synovial fluid. Collagen-induced arthritis (CIA) and control tissue was stained with hematoxylin and eosin (H&E) for histological changes; Safranin O/Fast Green staining examined histopathological changes and evidence of bone erosion. Human RA synovial fibroblasts (RASFs) were incubated with Antcin K and cell viability was examined by the MTT assay. VEGF mRNA expression was detected in RASFs using qPCR. Antcin K significantly inhibited VEGF expression and ameliorates endothelial progenitor cell (EPC) migration and tube formation in RASFs by downregulating the phospholipase C-γ/protein kinase C-α pathway. Antcin K also induced anti-angiogenic effects in human RASFs without cytotoxicity. PRACTICAL APPLICATIONS: Analysis of GEO dataset samples and human synovial fluids or synovial tissues revealed higher VEGF levels in rheumatoid arthritis (RA) samples compared with osteoarthritis (OA) and healthy control samples. VEGF levels were also higher in mice with collagen-induced arthritis (CIA) than in healthy controls. Antcin K markedly suppressed VEGF expression in human RA synovial fibroblasts and inhibited the migration and tube formation of epithelial progenitor cells (EPCs) by downregulating the phospholipase C-γ/protein kinase C-α pathway. Further investigations are warranted to examine the effects of Antcin K in other angiogenesis-associated disorders.


Subject(s)
Arthritis, Rheumatoid , Vascular Endothelial Growth Factor A , Animals , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Cholestenes , Fibroblasts , Humans , Mice , Synovial Membrane/metabolism , Synovial Membrane/pathology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
17.
Mol Ther Nucleic Acids ; 25: 536-553, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34589276

ABSTRACT

Mutant p53 (mutp53) commonly loses its DNA binding affinity to p53 response elements (p53REs) and fails to induce apoptosis fully. However, the p53 mutation does not predict chemoresistance in all subtypes of breast cancers, and the critical determinants remain to be identified. In this study, mutp53 was found to mediate chemotherapy-induced long intergenic noncoding RNA-p21 (lincRNA-p21) expression by targeting the G-quadruplex structure rather than the p53RE on its promoter to promote chemosensitivity. However, estrogen receptor alpha (ERα) suppressed mutp53-mediated lincRNA-p21 expression by hijacking mutp53 to upregulate damaged DNA binding protein 2 (DDB2) transcription for subsequent DNA repair and chemoresistance. Levels of lincRNA-p21 positively correlated with the clinical responses of breast cancer patients to neoadjuvant chemotherapy and had an inverse correlation with the ER status and DDB2 level. In contrast, the carboplatin-induced DDB2 expression was higher in ER-positive breast tumor tissues. These results demonstrated that ER status determines the oncogenic function of mutp53 in chemoresistance by switching its target gene preference from lincRNA-p21 to DDB2 and suggest that induction of lincRNA-p21 and targeting DDB2 would be effective strategies to increase the chemosensitivity of mutp53 breast cancer patients.

18.
Nutrients ; 13(8)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34444960

ABSTRACT

Hesperidin (HD) is a common flavanone glycoside isolated from citrus fruits and possesses great potential for cardiovascular protection. Hesperetin (HT) is an aglycone metabolite of HD with high bioavailability. Through the docking simulation, HD and HT have shown their potential to bind to two cellular proteins: transmembrane serine protease 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2), which are required for the cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our results further found that HT and HD suppressed the infection of VeroE6 cells using lentiviral-based pseudo-particles with wild types and variants of SARS-CoV-2 with spike (S) proteins, by blocking the interaction between the S protein and cellular receptor ACE2 and reducing ACE2 and TMPRSS2 expression. In summary, hesperidin is a potential TMPRSS2 inhibitor for the reduction of the SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , Hesperidin/chemistry , Hesperidin/pharmacology , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , COVID-19/virology , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , Humans , Molecular Docking Simulation , SARS-CoV-2/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
19.
Cancer Sci ; 112(10): 4234-4245, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34382727

ABSTRACT

Development of acquired resistance to lapatinib, a dual epidermal growth factor receptor (EGFR)/human epidermal growth factor receptor 2 (HER2) tyrosine kinase inhibitor, severely limits the duration of clinical response in advanced HER2-driven breast cancer patients. Although the compensatory activation of the PI3K/Akt survival signal has been proposed to cause acquired lapatinib resistance, comprehensive molecular mechanisms remain required to develop more efficient strategies to circumvent this therapeutic difficulty. In this study, we found that suppression of HER2 by lapatinib still led to Akt inactivation and elevation of FOX3a protein levels, but failed to induce the expression of their downstream pro-apoptotic effector p27kip1 , a cyclin-dependent kinase inhibitor. Elevation of miR-221 was found to contribute to the development of acquired lapatinib resistance by targeting p27kip1 expression. Furthermore, upregulation of miR-221 was mediated by the lapatinib-induced Src family tyrosine kinase and subsequent NF-κB activation. The reversal of miR-221 upregulation and p27kip1 downregulation by a Src inhibitor, dasatinib, can overcome lapatinib resistance. Our study not only identified miRNA-221 as a pivotal factor conferring the acquired resistance of HER2-positive breast cancer cells to lapatinib through negatively regulating p27kip1 expression, but also suggested Src inhibition as a potential strategy to overcome lapatinib resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Drug Resistance, Neoplasm/physiology , Lapatinib/pharmacology , MicroRNAs/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Animals , Breast Neoplasms/chemistry , Breast Neoplasms/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Dasatinib/pharmacology , Down-Regulation/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Forkhead Box Protein O3/metabolism , Hepatocyte Nuclear Factor 3-gamma/metabolism , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/drug effects , Microarray Analysis , NF-kappa B p50 Subunit/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Up-Regulation/drug effects , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/metabolism
20.
Sci Rep ; 11(1): 16537, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34400678

ABSTRACT

Evidence indicates that age-related macular degeneration (AMD) is associated with the prior presence of allergic diseases; however, large-scale studies in the literature are limited. A case-control study was conducted to describe the relationship between premorbid allergic diseases and AMD using Taiwan's National Health Insurance database. Eligibility criteria for inclusion of new adult AMD cases from 2000 to 2013 were set up. We defined the year of diagnosis as the index year. Age-, gender-, index year- matched controls who were drawn from the same database. The case control ratio was 1:4. For all participants, all premorbid conditions staring 1996 to index year were documented. Binary logistic regression was used to describe factors related to AMD occurrence. The AMD group consisted of 10,911 patients, and the comparison group consisted of 43,644 individuals. Patients with AMD showed significant associations with premorbid allergic diseases (aOR 1.54, 95% CI 1.47-1.61), specifically with allergic conjunctivitis (aOR 2.07, 95% CI 1.94-2.20), allergic rhinitis (aOR 1.32, 95% CI 1.25-1.39), asthma (aOR 0.99, 95% CI 0.93-1.06), and atopic dermatitis (aOR 1.04, 95% CI 0.94-1.17). Further analyses indicated that patients with more concurrent allergic diseases have higher associations with AMD than those with fewer concurrent diseases. Patients with more annual medical visits for their allergic diseases also showed higher associations with AMD than those with fewer visits. AMD is significantly associated with premorbid allergic diseases. The underlying mechanisms must be further investigated.


Subject(s)
Asthma/epidemiology , Conjunctivitis, Allergic/epidemiology , Dermatitis, Atopic/epidemiology , Macular Degeneration/epidemiology , Rhinitis, Allergic/epidemiology , Adult , Age of Onset , Aged , Aged, 80 and over , Case-Control Studies , Comorbidity , Diabetes Mellitus/epidemiology , Female , Humans , Hyperlipidemias/epidemiology , Hypertension/epidemiology , Male , Middle Aged , Obesity/epidemiology , Office Visits/statistics & numerical data , Risk , Sampling Studies , Taiwan/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...