Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 925: 171765, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38499099

ABSTRACT

Plant communities and soil microbiomes play a crucial role in regulating ecosystem multifunctionality (EMF). However, whether and how aboveground plant diversity, belowground soil microbial diversity and interactions with environmental factors affect EMF in sandy grasslands under climate change conditions is unclear. Here, we selected 15 typical grassland communities from the Horqin sandy grassland along temperature and precipitation gradients, using the mean annual temperature (AMT), mean annual precipitation (AP), soil temperature (ST), soil water content (SW) and pH as abiotic factors, and plant diversity (PD) and soil microbial diversity (SD) as biodiversity indicators. The effects of biodiversity and abiotic factors on individual ecosystem functions and EMF were studied. We found that PD and its components, plant species richness (SR), species diversity (PR) and genetic diversity (GD), had significant effects on aboveground biomass (AGB) and major factors involved in ecosystem nitrogen cycling (plant leaf nitrogen content (PLN) and soil total nitrogen content (STN)) (P < 0.05). Soil fungal diversity (FR) has a greater impact on ecosystem function than soil bacteria (BR) and archaea (ABR) in sandy grasslands and mainly promotes the accumulation of soil microbial carbon and nitrogen (MBC, MBN) (P < 0.05), STC and STN (P < 0.01). PD and two types of SD (FR and ABR) significantly regulated EMF (P < 0.01). Among the abiotic factors, soil pH and SW regulated EMF (P < 0.05), and SW and ST directly drove EMF (P < 0.05). PD drove EMF significantly and indirectly (positively) through soil pH and ST (P < 0.001), while SD drove EMF weakly and indirectly (negatively) through AP and PD (P > 0.05). PD was a stronger driving force on EMF than SD. These results improve our understanding of the drivers of multifunctionality in sandy grassland ecosystems.


Subject(s)
Ecosystem , Microbiota , Grassland , Sand , Biodiversity , Plants , Soil/chemistry , Nitrogen/analysis
2.
Plant Physiol ; 194(4): 2069-2085, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-37874747

ABSTRACT

Organ size shapes plant architecture during rice (Oryza sativa) growth and development, affecting key factors influencing yield, such as plant height, leaf size, and seed size. Here, we report that the rice Enhancer of Zeste [E(z)] homolog SET DOMAIN GROUP 711 (OsSDG711) regulates organ size in rice. Knockout of OsSDG711 produced shorter plants with smaller leaves, thinner stems, and smaller grains. We demonstrate that OsSDG711 affects organ size by reducing cell length and width and increasing cell number in leaves, stems, and grains. The result of chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) using an antitrimethylation of histone H3 lysine 27 (H3K27me3) antibody showed that the levels of H3K27me3 associated with cytokinin oxidase/dehydrogenase genes (OsCKXs) were lower in the OsSDG711 knockout line Ossdg711. ChIP-qPCR assays indicated that OsSDG711 regulates the expression of OsCKX genes through H3K27me3 histone modification. Importantly, we show that OsSDG711 directly binds to the promoters of these OsCKX genes. Furthermore, we measured significantly lower cytokinin contents in Ossdg711 plants than in wild-type plants. Overall, our results reveal an epigenetic mechanism based on OsSDG711-mediated modulation of H3K27me3 levels to regulate the expression of genes involved in the cytokinin metabolism pathway and control organ development in rice. OsSDG711 may be an untapped epigenetic resource for ideal plant type improvement.


Subject(s)
Histones , Oryza , Histones/genetics , Histones/metabolism , Oryza/metabolism , Organ Size/genetics , PR-SET Domains , Methylation , Cytokinins/metabolism , Gene Expression Regulation, Plant
3.
Neuro Oncol ; 25(10): 1788-1801, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37083136

ABSTRACT

BACKGROUND: Glioma stem cells (GSCs) are a subpopulation of tumor cells with self-renewal and tumorigenic capabilities in glioblastomas (GBMs). Diffuse infiltration of GSCs facilitates tumor progression and frustrates efforts at effective treatment. Further compounding this situation is the currently limited understanding of what drives GSC invasion. Here we comprehensively evaluated the significance of a novel invasion-related protein, Family with Sequence Similarity 129 Member A (FAM129A), in infiltrative GSCs. METHODS: Western blotting, immunohistochemistry, and gene expression analysis were used to quantify FAM129A in glioma specimens and cancer datasets. Overexpression and knockdown of FAM129A in GSCs were used to investigate its effects on tumor growth and invasion. RNA-seq, qRT-PCR, western blotting, and co-precipitation assays were used to investigate FAM129A signaling mechanisms. RESULTS: FAM129A is preferentially expressed in invasive frontiers. Targeting FAM129A impairs GSC invasion and self-renewal. Mechanistically, FAM129A acted as a positive regulator of Notch signaling by binding with the Notch1 intracellular domain (NICD1) and preventing its degradation. CONCLUSIONS: FAM129A and NICD1 provide a precise indicator for identifying tumor margins and aiding prognosis. Targeting them may provide a significantly therapeutic strategy for GSCs.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Neoplastic Stem Cells/metabolism , Glioma/pathology , Glioblastoma/pathology , Signal Transduction , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation , Brain Neoplasms/pathology
4.
Cell Death Dis ; 14(1): 28, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639372

ABSTRACT

Tumor-associated macrophages (TAMs) account for 30-50% of glioma microenvironment. The interaction between glioma tumor cells and TAMs can promote tumor progression, but the intrinsic mechanisms remain unclear. Herein, we reported that soluble LRIG3 (sLRIG3) derived from glioma tumor cells can block the M2 polarization of TAMs via interacting with NETO2, thus suppressing GBM malignant progression. The expression or activity of ADAM17 in glioma cells was positively correlated with the expression of sLRIG3 in cell supernatant. Soluble LRIG3 can suppress the M2-like polarity transformation of TAMs and inhibit the growth of tumor. High expression of LRIG3 predicts a good prognosis in patients with glioma. Mass spectrometry and Co-immunoprecipitation showed that sLRIG3 interacts with the CUB1 domain of NETO2 in TAMs. Silencing or knockout of NETO2 could block the effect of sLRIG3, which inhibited the M2-like polarity transformation of TAMs and promoted GBM tumor growth. However, overexpressing His-target NETO2 with CUB1 deletion mutation does not fully recover the suppressive effects of sLRIG3 on the TAM M2-polarization in NETO2-Knockout TAMs. Our study revealed vital molecular crosstalk between GBM tumor cells and TAMs. Glioma cells mediated the M2 polarization of TAM through the sLRIG3-NETO2 pathway and inhibited the progression of GBM, suggesting that sLRIG3-NETO2 may be a potential target for GBM treatment.


Subject(s)
Glioma , Tumor-Associated Macrophages , Humans , Tumor-Associated Macrophages/metabolism , Macrophages/metabolism , Glioma/pathology , Tumor Microenvironment , Cell Line, Tumor , Membrane Proteins/metabolism
5.
Front Oncol ; 12: 911876, 2022.
Article in English | MEDLINE | ID: mdl-35785151

ABSTRACT

Glioblastoma is the most common primary malignant tumor in the brain and has a dismal prognosis despite patients accepting standard therapies. Alternation of genes and deregulation of proteins, such as receptor tyrosine kinase, PI3K/Akt, PKC, Ras/Raf/MEK, histone deacetylases, poly (ADP-ribose) polymerase (PARP), CDK4/6, branched-chain amino acid transaminase 1 (BCAT1), and Isocitrate dehydrogenase (IDH), play pivotal roles in the pathogenesis and progression of glioma. Simultaneously, the abnormalities change the cellular biological behavior and microenvironment of tumor cells. The differences between tumor cells and normal tissue become the vulnerability of tumor, which can be taken advantage of using targeted therapies. Small molecule inhibitors, as an important part of modern treatment for cancers, have shown significant efficacy in hematologic cancers and some solid tumors. To date, in glioblastoma, there have been more than 200 clinical trials completed or ongoing in which trial designers used small molecules as monotherapy or combination regimens to correct the abnormalities. In this review, we summarize the dysfunctional molecular mechanisms and highlight the outcomes of relevant clinical trials associated with small-molecule targeted therapies. Based on the outcomes, the main findings were that small-molecule inhibitors did not bring more benefit to newly diagnosed glioblastoma, but the clinical studies involving progressive glioblastoma usually claimed "noninferiority" compared with historical results. However, as to the clinical inferiority trial, similar dosing regimens should be avoided in future clinical trials.

6.
Front Oncol ; 12: 904383, 2022.
Article in English | MEDLINE | ID: mdl-35814475

ABSTRACT

Background: The tightly controlled activity of EGFR is important for the homeostasis of self-renewal of human tissue. Mutations in the extracellular domain of EGFR are frequent and function as a novel mechanism for oncogenic EGFR activation in GBM, and impact the response of patients to small-molecule inhibitors. Methods: We constructed glioblastoma cell lines stably expressing wild-type EGFR and the mutant of EGFR S645C. We detected cell growth in vitro and in vivo. We evaluated the anti-tumor activity and effectiveness of gefitinib and osimertinib in cells. Results: In the present study, we identified an oncogenic substituted mutation of EGFR-S645C. The mutation can promote the proliferation and colony formation of glioblastoma in vitro and in vivo. Mechanistically, the EGFR S645C mutation potentially changes the formation of hydrogen bonds within dimerized EGFR and inhibits the degradation of EGFR to prolong downstream signaling. The mutation induces resistance to gefitinib but presents an opportunity for osimertinib treatment. Conclusion: The study indicated a novel oncogenic mutation and advises on the precise treatment of individual patients with the EGFR S645C mutation.

7.
Acta Biochim Biophys Sin (Shanghai) ; 54(8): 1171-1179, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35904215

ABSTRACT

The Hedgehog (Hh) signaling pathway is critical for embryonic development and tissue renewal. The G protein-coupled receptor (GPCR)-like protein Smoothened (SMO) is the central signal transducer in the Hh pathway. Cholesterol binds and then covalently links to the D95 residue of cysteine-rich domain (CRD) of human SMO. The cholesterylation of CRD is critical for SMO activation. SMO cholesterylation is a Ca 2+-boosted autoreaction that requires the formation of an ester bond between the side chains of D95 and Y130 as an intermediate. It is unknown whether other residues of SMO are involved in the esterification between D95 and cholesterol. In this study, we find that the SMO-CRD(27-192) can undergo cholesterylation. In addition to D95 and Y130, the residues critical for cholesterol modification include Y85, T88, T90, W109, W119, K133, E160 and F166. T88, W109, W119 and F166 also seem to be involved in protein folding. Notably, we find that Y85 and K133 form a cation-π interaction whose disruption abolishes cholesterylation and ciliary localization of SMO. This study highlights the mechanism and function of cholesterol modification of SMO.


Subject(s)
Cysteine , Hedgehog Proteins , Cations , Cholesterol/metabolism , Esters , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Smoothened Receptor/genetics , Smoothened Receptor/metabolism
9.
Front Plant Sci ; 12: 733268, 2021.
Article in English | MEDLINE | ID: mdl-34868115

ABSTRACT

Extensive studies have shown that the success of invasive plants in large environmental gradients can be partly attributed to related factors, including phenotypic plasticity and rapid evolution. To enhance their ability to compete and invade, invasive plants often show higher morphological and physiological plasticity to adapt to different habitat conditions. In the past two decades, invasive species have expanded to some new habitats in North and Northwest China, including arid oasis agricultural zones, which are disturbed by human activities, and the ecosystem itself is very fragile. To evaluate the ecological adaptability of invasive plants widely distributed in North and Northwest China, we studied the physiological response and tolerance mechanism of different geographical populations of Solanum rostratum Dunal to different drought-stress gradients in extremely arid regions (Xinjiang population) and semi-arid regions (Inner Mongolia population). The results showed that with the aggravation of drought stress, S. rostratum from different geographical populations adopted different physiological mechanisms to drought stress. Xinjiang population was mostly affected by root/shoot ratio and chlorophyll fluorescence characteristics, showing higher plasticity in the net and total photosynthetic rates, while the Inner Mongolia population mainly relied on the accumulation of osmotic adjustment substances, higher leaf dry matter content, and increased malondialdehyde to cope with drought stress. Based on these results, we concluded that the physiological responses of S. rostratum invading different habitats in northern China to drought stress were significantly different. The drought resistance of the Xinjiang population was higher than that of the Inner Mongolia population. In general, S. rostratum can be widely adapted to both harsh and mild habitats through phenotypic plasticity, threatening agricultural production and ecological environment security in northern China.

10.
Sci Total Environ ; 794: 148673, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34217084

ABSTRACT

Tropical and subtropical rivers are being subjected to multiple stressors from human disturbance (e.g., water pollution and habitat degradation). Understanding the relationship between environmental conditions and the river ecosystem is important for improving river management. We built 14 Ecopath models composed of 28 functional groups (trophic levels [TLs] of 1.0-3.8) along a subtropical urban river to explore the influence of environmental changes on system attributes. From headwaters to downstream, the model outputs showed that the transfer efficiency (TE), energy flow parameters, and ecosystem theory indices exhibited significant (P < 0.05) differences across a longitudinal gradient of disturbance, indicating heterogeneous attributes of local river segments. The high TE values of TLs I, II, and III separated the upper, middle, and lower reaches, respectively, which could be attributed to the shift in dominant consumption flows from upstream 'periphyton - aquatic insects - insectivorous fish' to midstream 'detritus - shrimp - crustaceavorous fish' and to downstream 'phytoplankton - filter-feeding invertebrates/fish'. Structural equation modelling was used to test the causal relationships among environmental variables and demonstrated that abiotic factors directly influenced biomass composition and indirectly influenced trophic networks. Water quality, including dissolved oxygen and flow velocity; habitat characteristics, such as riffles, cobble-gravel substrate, and seasonal floodplain; and biological indicators, including the relative contributions (%) of decapods, insectivorous fish, and insect scrapers to biomass composition, had significant (P < 0.05) positive impacts on system maturity (evaluated by omnivory, connectance, and cycling indices). In the future, it will be possible to evaluate the health of river ecosystems by monitoring representative environmental factors, which could be a cost-effective approach to system-level improvement.


Subject(s)
Ecosystem , Food Chain , Animals , China , Humans , Invertebrates , Rivers
11.
Front Plant Sci ; 12: 785653, 2021.
Article in English | MEDLINE | ID: mdl-35058950

ABSTRACT

The decreasing precipitation with global climate warming is the main climatic condition in some sandy grassland ecosystems. The understanding of physiological responses of psammophytes in relation to warming and precipitation is a possible way to estimate the response of plant community stability to climate change. We selected Lespedeza davurica, Artemisia scoparia, and Cleistogenes squarrosa in sandy grassland to examine the effect of a combination of climate warming and decreasing precipitation on relative water content (RWC), chlorophyll, proline, and antioxidant enzyme activities. We found that all experimental treatments have influenced RWC, chlorophyll, proline, and antioxidant enzyme activities of three psammophytes. L. davurica has the highest leaf RWC among the three psammophytes. With the intensification of precipitation reduction, the decreasing amplitude of chlorophyll from three psammophytes was L. davurica > C. squarrosa > A. scoparia. At the natural temperature, the malondialdehyde (MDA) content of the three psammophytes under severe drought treatment was much higher than other treatments, and their increasing degree was as follows: A. scoparia > C. squarrosa > L. davurica. At the same precipitation gradient, the proline of three psammophytes under warming was higher than the natural temperature. The differences in superoxide dismutase (SOD) among the three psammophytes were A. scoparia > L. davurica > C. squarrosa. Moreover, at natural temperature, more than 40% of precipitation reduction was most significant. Regardless of warming or not, the catalase (CAT) activity of A. scoparia under reduced precipitation treatments was higher than natural temperature, while the response of L. davurica was opposite. Correlation analyses evidenced that warming (T) was significant in L. davurica and precipitation (W) was significant in A. scoparia and C. squarrosa according to the Monte-Carlo permutation test (p = 0.002, 0.004, and 0.004). The study is important in predicting how local plants will respond to future climate change and assessing the possible effects of climate change on sandy grassland ecosystems.

12.
Bioresour Technol ; 318: 124061, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32905947

ABSTRACT

The mechanisms of bacterial nitrogen (N), phosphorus (P), and chemical oxygen demand (COD) removal in pilot-scale constructed wetlands (CWs) were investigated in the present work. Three types of CWs were assessed: vertical flow (VF), horizontal flow (HF), and surface flow (SF), each with three planting conditions, with either Thalia, Canna or without plants. The results show that construction types affected microbes more than planting conditions. VF CWs promoted the aerobic processing of total N, total P, COD, and NH3-N, increasing the respective removal efficiencies by 4-19%, 13-32%, 19-29%, and 75-80%, respectively, compared with SF CWs. The relative abundance of nitrifying, denitrifying, methanotrophic and dephosphorized bacteria, and functional genes such as nxrA, nirK, nosZ, mmoX, and phoD were higher in VF CWs. Positive and simple gene networks in VF CWs can effectively reduce the redundancy in functional genes, enhance bacterial function and gene interactions, thus promoting nutrient removal.


Subject(s)
Waste Disposal, Fluid , Wetlands , Bacteria/genetics , Biological Oxygen Demand Analysis , Nitrogen/analysis , Wastewater
13.
Plants (Basel) ; 9(8)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759799

ABSTRACT

Global warming and changes in rainfall patterns may put many ecosystems at risk of drought. These stressors could be particularly destructive in arid systems where species are already water-limited. Understanding plant responses in terms of photosynthesis and growth to drought and rewatering is essential for predicting ecosystem-level responses to climate change. Different drought responses of C3 and C4 species could have important ecological implications affecting interspecific competition and distribution of plant communities in the future. For this study, C4 plant Pennisetum centrasiaticum and C3 plant Calamagrostis pseudophragmites were subjected to progressive drought and subsequent rewatering in order to better understand their differential responses to regional climate changes. We tracked responses in gas exchange, chlorophyll fluorescence, biomass as well as soil water status in order to investigate the ecophysiological responses of these two plant functional types. Similar patterns of photosynthetic regulations were observed during drought and rewatering for both psammophytes. They experienced stomatal restriction and nonstomatal restriction successively during drought. Photosynthetic performance recovered to the levels in well-watered plants after rewatering for 6-8 days. The C4 plant, P. centrasiaticum, exhibited the classic CO2-concentrating mechanism and more efficient thermal dissipation in the leaves, which confers more efficient CO2 assimilation and water use efficiency, alleviating drought stress, maintaining their photosynthetic advantage until water deficits became severe and quicker recovery after rewatering. In addition, P. centrasiaticum can allocate a greater proportion of root biomass in case of adequate water supply and a greater proportion of above-ground biomass in case of drought stress. This physiological adaptability and morphological adjustment underline the capacity of C4 plant P. centrasiaticum to withstand drought more efficiently and recover upon rewatering more quickly than C. pseudophragmites and dominate in the Horqin Sandy Land.

14.
Sci Total Environ ; 706: 135955, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31855648

ABSTRACT

Constructed wetlands (CWs) have been used to remove organic pollutants including antibiotics based on the roles of plants and microbial communities, but how rhizosphere and bulk substrate-associated microbiomes respond to antibiotics during biodegradation have seldom been researched. The effects of sulfonamides (SAs) on the microbiome composition in different compartments, namely rhizosphere, near rhizosphere and bulk substrate, in CWs planted with either Cyperus alternifolius, Cyperus papyrus or Juncus effuses were evaluated using specially designed rhizoboxes and 16S rRNA gene high-throughput sequencing. Results revealed that wastewater-borne SAs significantly reduced the microbial biodiversity in CWs, and inhibited the functional bacterial groups related to sulphur and nitrogen cycles. On the contrary, SAs significantly enriched methylotrophs with potential to initially biodegrade SAs, such as Methylosinus, Methylotenera, Methylocaldum and Methylomonas, and such enrichment was more significant in rhizosphere than in bulk substrate. The network analysis indicated that a more complex network in bulk substrate was more fragile to SA stress. The presence of wetland plants significantly influenced the bacterial community structure in CWs, but in the same compartment, the difference among the three plants species was not obvious. Wetland plants ensured the stability of rhizosphere microorganisms and increased their ability to tolerate SA stress. The present study enhances our understanding of the importance of plant-bacteria interactions in CWs and responses of substrate microbiome to antibiotics.


Subject(s)
Microbiota , Rhizosphere , Wetlands , Biodegradation, Environmental , RNA, Ribosomal, 16S , Sulfonamides , Waste Disposal, Fluid , Wastewater
15.
Environ Pollut ; 239: 147-160, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29653305

ABSTRACT

Mercury (Hg) contamination in aquatic systems remains a global concern with the biomagnification of methylmercury (MeHg) through primary consumers (zooplankton) to fish and humans. In this study, total mercury (THg) and MeHg concentrations were analyzed in zooplankton collected from Baihua reservoir (Guizhou Province, China). Our results demonstrated that THg and MeHg concentrations were strongly correlated to zooplankton community and biomass composition. The THg concentration was significantly higher in micro-zooplankton compared to meso-zooplankton and macro-zooplankton, and MeHg concentration increased significantly as body size increased. Hg increases in zooplankton were influenced by the numbers of calanoid copepods and Daphnia present relative to phytoplankton and zooplankton biomass. Many zooplankton taxa in the three size-fractions were affected by THg exposure. The biomasses of Bosmina longirostris, Thermocyclops brevifurcatus, Asplanchna priodonta and Cyclops vicinus vicinus were positively correlated with Hg accumulation, while Daphnia hyalina, and Phyllodiaptomus tunguidus had a negative association. THg and MeHg bioaccumulation factors were correlated with phosphorus and total nitrogen concentration, zooplankton biomass, and chlorophyll-a concentration. Phosphorus loading was associated with increased THg and MeHg accumulation in the zooplankton highlighting biomagification with eutrophication. Chlorophyll-a levels were not correlated to THg and MeHg accumulation in zooplankton when phytoplankton densities were >107 cells L-1 and chlorophyll-a concentrations <9 µgL-1. This finding contradicts the idea of MeHg biodilution with increased algae biomass. However, changes in the phytoplankton species and biomass altered the availability of food for zooplankton, particularly micro-zooplankton and macro-zooplankton. Ultimately, the bioaccumulation of MeHg and THg across lower trophic levels was based more on the availability of preferred food resources than on total biological productivity.


Subject(s)
Environmental Monitoring , Mercury/analysis , Methylmercury Compounds/analysis , Water Pollutants, Chemical/analysis , Zooplankton/metabolism , Animals , Biomass , China , Chlorophyll/analogs & derivatives , Chlorophyll/analysis , Chlorophyll A , Copepoda/metabolism , Daphnia/metabolism , Eutrophication , Fishes , Food Chain , Humans , Lakes/chemistry
16.
Appl Microbiol Biotechnol ; 101(21): 7923-7931, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28918434

ABSTRACT

Efficient isolation of target DNA is a crucial first step of DNA-based metagenomic analyses of environmental samples. Insufficient quantity and purity of DNA isolated using commercial kits result in missing genetic information, especially for large-diameter substrates in constructed wetlands (CWs). Here, we addressed this problem by devising a cost-effective calcium chloride lysozyme-sodium dodecyl sulfate (SDS) method (CCLS), with key improvements in the steps of humic acid removal and cell lysis. The buffer comprising Tris, EDTA, Na2O2P7 and PVPP (TENP), and skim milk, could reduce adsorption between microorganisms and substrates, and calcium chloride precipitated and removed over 94% of humic acid. This humic acid removal step, when compared to the PowerSoil DNA kit (MO BIO Laboratories Inc.) (MBKIT), significantly enhanced the DNA purity (A260/230) from 0.68 to 1.63 (p < 0.01). When gentle and extended cell lysis in CCLS replaced the short but violent bead-beating in the MBKIT, DNA yield and the amount of lysed bacteria detected by quantitative real-time polymerase chain reaction (qPCR) on average increased by 2 and 4 folds, respectively, compared to that obtained using the MBKIT (p < 0.01). Furthermore, the full-length bacterial 16S rRNA gene and nirK gene from denitrifying microorganisms were successfully amplified from CCLS-generated DNA. Additionally, bacterial diversity indices of richness, Shannon, and evenness examined by denaturing gradient gel electrophoresis (DGGE) increased by 75, 30, and 7%, respectively, by CCLS compared to that using the MBKIT. Hence, the CCLS method enables improved evaluation of microbial density and diversity in CW systems.


Subject(s)
DNA, Bacterial/isolation & purification , Environmental Microbiology , Metagenomics/methods , Wetlands , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Metagenomics/standards , Nitrate Reductase/genetics , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics
17.
J Agric Food Chem ; 65(26): 5238-5243, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28562038

ABSTRACT

Fe-impregnated biochar was assessed as a method to remove the pesticide pollutant chlorpyrifos, utilizing biochar/FeOx composite synthesized via chemical coprecipitation of Fe3+/Fe2+ onto Cyperus alternifolius biochar. Fe-impregnated biochar exhibited a higher sorption capacity than pristine biochar, resulting in more efficient removal of chlorpyrifos from water. Soil was dosed with pristine or Fe-impregnated biochar at 0.1 or 1.0% w/w, to evaluate chlorpyrifos uptake in Allium fistulosum L. (Welsh onion). The results showed that the average concentration of chlorpyrifos and its degradation product, 3,5,6-trichloro-2-pyridinol (TCP), decreased in A. fistulosum L. with increased levels of pristine biochar and Fe-biochar. Fe-biochar was found to be more effective in reducing the uptake of chlorpyrifos by improving the sorption ability and increasing plant root iron plaque. Bioavailability of chlorpyrifos is reduced with both biochar and Fe-biochar soil dosing; however, the greatest persistence of chlorpyrifos residues was observed with 1.0% pristine biochar. Microbial community analysis showed Fe-biochar to have a positive impact on the efficiency of chlorpyrifos degradation in soils, possibly by altering microbial communities.


Subject(s)
Allium/metabolism , Bacteria/metabolism , Charcoal/chemistry , Chlorpyrifos/chemistry , Cyperus/chemistry , Insecticides/chemistry , Iron/chemistry , Soil Pollutants/chemistry , Adsorption , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biodegradation, Environmental , Biodiversity , Chlorpyrifos/metabolism , Insecticides/metabolism , Soil/chemistry , Soil Microbiology , Soil Pollutants/metabolism
18.
Bioresour Technol ; 233: 264-270, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28285217

ABSTRACT

Carbon isotope analysis and 454 pyrosequencing methods were used to investigate in situ biodegradation of chlorpyrifos during its transport through three model integrated recirculating constructed wetlands (IRCWs). Results show that plant and Fe-impregnated biochar promoted degradation of chlorpyrifos and its metabolite 3,5,6-trichloro-2-pyridinol (TCP). Carbon isotope ratios in the IRCWs shifted to -31.24±0.58‰ (IRCW1, plant free), -26.82±0.60‰ (IRCW2, with plant) and -24.76±0.94‰ (IRCW3, with plant and Fe-biochar). The enrichment factors (Ɛbulk,c) were determined as -0.69±0.06‰ (IRCW1), -0.91±0.07‰ (IRCW2) and -1.03±0.09‰ (IRCW3). Microbial community analysis showed that IRCW3 was dominated by members of Bacillus, which can utilize and degrade chlorpyrifos. These results reveal that plant and Fe-biochar can induce carbon isotope fractionation and have a positive impact on the chlorpyrifos degradation efficiency by influencing the development of beneficial microbial communities.


Subject(s)
Wetlands , Biodegradation, Environmental , Carbon Isotopes , Chlorpyrifos
19.
Ecol Evol ; 6(22): 8256-8266, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27878093

ABSTRACT

Caragana microphylla (Leguminosae) is a dominant climax semishrub species in northern China. We evaluated genetic variation within and among populations sampled from three different environmental gradients in Horqin Sandy Land in northern China using intersimple sequence repeats markers and investigated the possible existence of relationships between genetic diversity and environmental factors. The results showed that C. microphylla have high genetic diversity, and environmental gradients affected genetic diversity of C. microphylla populations. Genetic diversity of all populations was affected by many environmental factors and as well correlated with warm index and soil Olsen phosphorus (SOP) concentration. These results have important implications for restoration and management of these degraded ecosystems in arid and semi-arid areas.

20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(5): 1222-6, 2009 May.
Article in Chinese | MEDLINE | ID: mdl-19650458

ABSTRACT

By synthesizing Au nanoparticles with the controllable size from about 16 to 160 nm and measuring their SERS activity, the authors found that Au nanoparticles film with a size in the range of 120-135 nm showed the highest SERS activity with the 632.8 nm excitation, which is different from previous experimental results and theoretical predictions. The three dimensional finite difference time domain (3D-FDTD)method was employed to simulate the size dependent SERS activity. At the 632.8 nm excitation, the particles with a size of 110 nm shows the highest enhancement under coupling condition and presents an enhancement as high as 10(9) at the hot site. If the enhancement is averaged over the whole surface, the enhancement can still be as high as 10(7), in good agreement with our experimental data. For Au nanoparticles with a larger size such as 220 nm, the multipolar effect leads to the appearance of the second maximum enhancement with the increase in particles size. The averaged enhancement for the excitation line of 325 nm is only 10(2).

SELECTION OF CITATIONS
SEARCH DETAIL
...