Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
1.
Chemosphere ; 361: 142416, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797218

ABSTRACT

Although the promotive effect of direct interspecies electron transfer (DIET) on methane production has been well-documented, the practical applicability of DIET in different scenarios have not yet been systematically studied. This study compared the effects of magnetite-mediated DIET with conventional biogas mixing-driven interspecies hydrogen transfer (IHT) on anaerobic digestion (AD) of swine manure (SM). Compared with control, magnetite supplementation, biogas circulation, and their integration enhanced the CH4 yield by 19.3%, 25.9%, and 26.2%, respectively. Magnetite mainly enriched DIET-related syntrophic bacteria (Anaerolineae and Synergistia) and methanogens (Methanosarcina) to accelerate acidification and establish DIET, while biogas circulation mainly enriched hydrolytic bacteria (Clostridia) and hydrogenotrophic methanogens (Methanolinea and Methanobacterium) to promote hydrolysis and accelerate IHT. Coupling magnetite addition with biogas circulation led to the enrichment of the above six microorganisms to different extents. The effectiveness of the strategies for lowering the H2 pressure followed: magnetite + biogas circulation ≈ biogas circulation > magnetite. Under stress-free environment, the enhancement effect of magnetite-induced DIET was not even as pronounced as biogas circulation-a simple and common mixing strategy in commercial AD plants, and the promotion effect of magnetite was insignificant in the well-mixed digesters. In short, the magnetite-mediated DIET is not always effective in improving AD of SM.

2.
J Ethnopharmacol ; 331: 118300, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38718889

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Schisandra sphenanthera (Schisandra sphenanthera Rehd. et Wils.) is the dried mature fruit of Schisandra sphenanthera, a plant in the Magnoliaceae family. It was used in the treatment of diabetes mellitus in the Jade Fluid Decoction and the Xiaoke pills, which were recorded in ancient books. However, its mechanism of action in the treatment of type 2 diabetes mellitus (T2DM) was unclear and needs further study. AIM OF THE STUDY: This research aimed to investigate the chemical composition and lignan content of Schisandra sphenanthera petroleum ether parts (SPEP) and to evaluate the effects of SPEP on sweet taste receptors (STRs) and intestinal flora in rats on a high-fat diet (HFD). Additionally, the relationships between SPEP and hyperglycemia and insulin resistance were examined. MATERIALS AND METHODS: GC-MS was used to determine the chemical composition of SPEP, and HPLC was used to determine the lignin content. A combination of the HFD and the administration of streptozotocin (STZ) was employed to generate a rat model of T2DM. Petroleum ether extracts from Schisandra sphenanthera were used as the focus of the research to evaluate the effects of these extracts on the glucolipid metabolism of T2DM rats, as well as the underlying mechanisms. RESULTS: Analysis of the GC-MS spectrum of SESP revealed a total of 58 compounds. HPLC analysis revealed that SPEP had the highest concentration of Schisandrin A and the lowest concentration of Schisandrol A. The drug administration intervention resulted in a significant decrease in body weight and pancreatic weight of diabetic rats compared to the Normal group. When compared to the Model group, the body weight of rats in the drug administration group and the Metformin group had a more moderate decrease, while the pancreatic weight and pancreatic-to-body ratio increased. The Model group shown significant increases in FBG, OGTT, GHb, TC, TG, LDL-C, ALT, AST, MDA, FINS, and NEFA, as well as significant decreases in HDL-C and SOD, when compared to the Normal group (P < 0.05). The administration of each group was found to be significantly effective in decreasing FBG, OGTT, GHb, TC, TG, LDL-C, ALT, AST, MDA, FINS, NEFA, while increasing HDL-C and SOD when compared to the Model group. The application of SPEP had a positive impact on hepatocyte swelling, hepatocyte degeneration, and necrosis, as well as the morphological structure of pancreatic islet cells. Furthermore, the protein expression levels of T1R2, TRPM5 and GLP-1 in the small intestine of the Model group were reduced. After a period of six weeks, the protein expression levels began to align more closely with those of the Normal group of rats. Analysis of 16S rRNA sequencing revealed that the intestinal microbiota of diabetic rats was significantly disrupted, with a decrease in the abundance of the Firmicutes phylum and an increase in the abundance of the Bacteroidetes phylum. Furthermore, the composition of the dominant genus was distinct from that of the control group. After the drug intervention, the microbiota of diabetic rats was significantly altered, exhibiting a higher abundance and diversity, as well as a significant enrichment of the community. The SPEP treatment resulted in a significant increase in acetic acid, propionic acid, and butyric acid. CONCLUSIONS: The findings of this research indicated that SPEP could be effective in treating T2DM through the regulation of STRs, the adjustment of disturbed metabolite levels, and the alteration of intestinal flora.


Subject(s)
Alkanes , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Hyperglycemia , Insulin Resistance , Plant Extracts , Rats, Sprague-Dawley , Schisandra , Animals , Schisandra/chemistry , Gastrointestinal Microbiome/drug effects , Male , Diabetes Mellitus, Experimental/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/administration & dosage , Diabetes Mellitus, Type 2/drug therapy , Hyperglycemia/drug therapy , Rats , Alkanes/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Diet, High-Fat/adverse effects , Blood Glucose/drug effects , Blood Glucose/metabolism , Streptozocin , Receptors, G-Protein-Coupled/metabolism , Lignans/pharmacology , Lignans/isolation & purification
3.
J Mech Behav Biomed Mater ; 156: 106603, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38815434

ABSTRACT

OBJECTIVES: The objective of this investigation was to assess the stress and displacement pattern of the craniomandibular complex by employing finite element methodology to simulate diverse angulations of inclined planes that are incorporated in the Twin Block appliance. METHODS: A 3D finite element representation was established by use of Cone Beam Computed Tomography (CBCT) scans. This comprehensive structure included craniofacial skeletal components, the articular disc, a posterior disc elastic layer, dental elements, periodontal ligaments, and a Twin Block appliance. This investigation is the first to incorporated inclined planes featuring three distinct angulations (45, 60, and 70°) as the study models. Mechanical impacts were evaluated within the glenoid fossa, tooth, condylar, and articular disc regions. RESULTS: In all simulations, the stress generated by the Twin Block appliance was distributed across teeth and periodontal ligament, facilitating the anterior movement of mandibular teeth and the posterior displacement of maxillary teeth. Within the temporomandibular joint region, compressive forces on the superior and posterior facets of the condyle diminished, coinciding with the stress configuration that fosters condylar and mandibular growth. Stress dispersion homogenized in the condylar anterior facet and articular disc, with considerable tensile stress in the glenoid fossa's posterior aspect conforming to stress distribution that promote fossa reconfiguration. The 70° inclined plane exerts the highest force on the tissues. The condyle's maximum and minimum principal stresses are 0.36 MPa and -0.15 MPa, respectively, while those of the glenoid fossa are 0.54 MPa and -0.23 MPa. CONCLUSION: Three angled appliances serve the purpose of advancing the mandible. A 45° inclined plane relative to the occlusal plane exerts balanced anteroposterior and vertical forces on the mandibular arch. Steeper angles yield greater horizontal forces, which may enhance forward growth and efficient repositioning.

4.
Front Physiol ; 15: 1386413, 2024.
Article in English | MEDLINE | ID: mdl-38645688

ABSTRACT

Lysosomes-associated membrane proteins (LAMPs), a family of glycosylated proteins and major constituents of the lysosomal membranes, play a dominant role in various cellular processes, including phagocytosis, autophagy and immunity in mammals. However, their roles in aquatic species remain poorly known. In the present study, three lamp genes were cloned and characterized from Micropterus salmoides. Subsequently, their transcriptional levels in response to different nutritional status were investigated. The full-length coding sequences of lamp1, lamp2 and lamp3 were 1251bp, 1224bp and 771bp, encoding 416, 407 and 256 amino acids, respectively. Multiple sequence alignment showed that LAMP1-3 were highly conserved among the different fish species, respectively. 3-D structure prediction, genomic survey, and phylogenetic analysis were further confirmed that these genes are widely existed in vertebrates. The mRNA expression of the three genes was ubiquitously expressed in all selected tissues, including liver, brain, gill, heart, muscle, spleen, kidney, stomach, adipose and intestine, lamp1 shows highly transcript levels in brain and muscle, lamp2 displays highly expression level in heart, muscle and spleen, but lamp3 shows highly transcript level in spleen, liver and kidney. To analyze the function of the three genes under starvation stress in largemouth bass, three experimental treatment groups (fasted group and refeeding group, control group) were established in the current study. The results indicated that the expression of lamp1 was significant induced after starvation, and then returned to normal levels after refeeding in the liver. The expression of lamp2 and lamp3 exhibited the same trend in the liver. In addition, in the spleen and the kidney, the transcript level of lamp1 and lamp2 was remarkably increased in the fasted treatment group and slightly decreased in the refed treatment group, respectively. Collectively, our findings suggest that three lamp genes may have differential function in the immune and energetic organism in largemouth bass, which is helpful in understanding roles of lamps in aquatic species.

5.
Biosci Rep ; 44(3)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38391133

ABSTRACT

Rapeseed cake serves as a by-product in the oil extraction industry, characterized by its elevated protein content. However, the presence of antinutritional factors limits the utilization of rapeseed cake as a viable protein source. In this study, different doses of γ-irradiation were used to irradiate rapeseed cake and rapeseed protein isolate was extracted through a modified alkaline solution and acid precipitation method from rapeseed cake. The chemical composition and in vivo acute toxicity of rapeseed protein isolate were determined. The protein recovery rate of rapeseed protein isolate was 39.08 ± 3.01% after irradiation, while the content of antinutritional factors was significantly reduced. Moreover, γ-irradiation did not have any experimentally related effects on clinical observations or clinicopathology in mice. Overall, the reduced antinutrients and increased functional properties suggest that the irradiation of rapeseed cake (<9 kGy) could be utilized as a pre-treatment in the development of rapeseed cake-based value-added protein products.


Subject(s)
Brassica napus , Brassica rapa , Animals , Mice , Brassica napus/chemistry , Brassica rapa/chemistry
6.
Front Plant Sci ; 15: 1310328, 2024.
Article in English | MEDLINE | ID: mdl-38362447

ABSTRACT

Heavy metal (HM)-induced stress can lead to the enrichment of HMs in plants thereby threatening people's lives and health via the food chain. For this reason, there is an urgent need for some reliable and practical techniques to detect and analyze the absorption, distribution, accumulation, chemical form, and transport of HMs in plants for reducing or regulating HM content. Not only does it help to explore the mechanism of plant HM response, but it also holds significant importance for cultivating plants with low levels of HMs. Even though this field has garnered significant attention recently, only minority researchers have systematically summarized the different methods of analysis. This paper outlines the detection and analysis techniques applied in recent years for determining HM concentration in plants, such as inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), X-ray absorption spectroscopy (XAS), X-ray fluorescence spectrometry (XRF), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), non-invasive micro-test technology (NMT) and omics and molecular biology approaches. They can detect the chemical forms, spatial distribution, uptake and transport of HMs in plants. For this paper, the principles behind these techniques are clarified, their advantages and disadvantages are highlighted, their applications are explored, and guidance for selecting the appropriate methods to study HMs in plants is provided for later research. It is also expected to promote the innovation and development of HM-detection technologies and offer ideas for future research concerning HM accumulation in plants.

7.
Foods ; 13(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38397591

ABSTRACT

Ganoderma, often hailed as a holistic "health package", comprises an array of nutritional components and active compounds, contributing to its esteemed status in the realm of healthy foods. In this study, a comprehensive analysis was performed to elucidate the diverse nutritional profiles, bioactive components, and antiproliferative activities between two Ganoderma species: G. lucidum (GLU) and G. leucocontextum (GLE). The results showed that GLE possessed a higher level of nutritional constituents, except for dietary fiber. Fatty acid analysis revealed comparable profiles rich in unsaturated fatty acids for both species. The ethanol extract of GLU and GLE exhibited potent antioxidant capabilities and remarkable inhibition of tumor cell proliferation via apoptosis induction, with greater potency in GLE. The heightened triterpene levels in GLE potentially contribute to its augmented antitumoral effects. The exploration emphasized the significance of comprehending the varied chemical compositions of Ganoderma species, providing insights into their potential health benefits applications in the food and pharmaceutical industries.

8.
Clin Anat ; 37(2): 218-226, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38186377

ABSTRACT

Symmetry is an essential component of esthetic assessment. Accurate assessment of facial symmetry is critical to the treatment plan of orthognathic surgery and orthodontic treatment. However, there is no internationally accepted midsagittal plane (MSP) for orthodontists and orthognathic surgeons. The purpose of this study was to explore a clinically friendly MSP, which is more accurate and reliable than what is commonly used in symmetry assessment. Forty patients with symmetric craniofacial structures were analyzed on cone-beam computed tomography (CBCT) scans. The CBCT data were exported to the Simplant Pro software to build four reference planes that were constructed by nasion (N), basion (Ba), sella (S), odontoid (Dent), or incisive foramen (IF). A total of 31 landmarks were located to determine which reference plane is the most optimal MSP by comparing the asymmetry index (AI). The mean value of AI showed a significant difference (p < 0.05) among four reference planes. Also, the mean value of AI for all landmarks showed that Plane 2 (consisting of N, Ba, and IF) and Plane 4 (consisting of N, IF, and Dent) were more accurate and stable. In conclusion, the MSP consisting of N, Dent, and IF shows more accuracy and reliability than the other planes. Further, it is more clinically friendly because of its significant advantage in landmarking.


Subject(s)
Anatomic Landmarks , Cone-Beam Computed Tomography , Humans , Reproducibility of Results , Anatomic Landmarks/diagnostic imaging , Cephalometry/methods , Cone-Beam Computed Tomography/methods , Facial Bones , Imaging, Three-Dimensional/methods
9.
Int J Biol Macromol ; 257(Pt 1): 128666, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070805

ABSTRACT

Staphylococcus enterotoxin B (SEB) interacts with MHC-II molecules to overactivate immune cells and thereby to produce excessive pro-inflammatory cytokines. Disrupting the interactions between SEB and MHC-II helps eliminate the lethal threat posed by SEB. In this study, a de novo computational approach was used to design protein binders targeting SEB. The MHC-II binding domain of SEB was selected as the target, and the possible promising binding mode was broadly explored. The obtained original binder was folded into triple-helix bundles and contained 56 amino acids with molecular weight 5.9 kDa. The interface of SEB and the binder was highly hydrophobic. ProteinMPNN optimization further enlarged the hydrophobic region of the binder and improved the stability of the binder-SEB complex. In vitro study demonstrated that the optimized binder significantly inhibited the inflammatory response induced by SEB. Overall, our research demonstrated the applicability of this approach in de novo designing protein binders against SEB, and thereby providing potential therapeutics for SEB induced diseases.


Subject(s)
Enterotoxins , Histocompatibility Antigens Class II , Enterotoxins/chemistry , Cytokines/metabolism
10.
Int Orthod ; 21(4): 100815, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37839391

ABSTRACT

OBJECTIVE: The modified clear twin-block aligner (CTBA) was developed to provide a mandibular advancement appliance for the treatment of mandibular retrognathia. The objective of this study was to analyse the stress distribution changes of CTBA with 45°, 60° and 70° bite blocks. MATERIAL AND METHODS: A three-dimensional model of the craniomaxillofacial bones and teeth was generated from a spiral computed tomography (CT) scan. The models of the articular disc, capsule, periodontal ligament and CTBA were constructed mathematically. After assigning the appropriate material properties and the boundary condition using ABAQUS software, we simulated the CTBA with different bite blocks to analyse the mechanical effects. RESULTS: In the temporomandibular joint (TMJ) region, the posterior aspect of the condyle and glenoid fossa experienced tensile stress that was approximately about 22 times greater at 70° than at 45°. The Von Mises stress distribution on the articular disc tended to be uniform. The strain direction of the condyle was backward. In the maxillary bone, the stress on the labial alveolar bone was about 5.83MPa at 70° and greater than that on the lingual side. The resulting displacement of the dentition revealed a tendency for the upper teeth to shift backward and the lower teeth to move forward by 0.46 to 0.49mm. The foregoing stress and displacement rose as the angle of the bite blocks increased. CONCLUSIONS: CTBA with 70° bite blocks constituted an advantageous biomechanical setting for the treatment of mandibular retrognathia in teenagers and provided a superior therapeutic effect.


Subject(s)
Mandibular Advancement , Retrognathia , Humans , Adolescent , Mandibular Condyle , Retrognathia/therapy , Finite Element Analysis , Temporomandibular Joint/diagnostic imaging
11.
J Environ Manage ; 347: 119114, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37783084

ABSTRACT

In this study, an in situ grown FeCo-Layered double hydroxide anchored to the surface of a bulk carbon aerogel (FeCo-LDH/CA) for contaminant degradation during the heterogeneous electro-Fenton (EF) process. The results exhibited that the FeCo-LDH/CA cathode achieved 100% of 2,4-dichlorophenol (2,4-DCP = 20 mg/L) degradation within 120 min at pH = 3, application current 20 mA, and Na2SO4 concentration 0.05 M. Moreover, the degradation efficiency was impressive in the range of pH = 2-9. The coexistence of the Fe (III)/Fe (II) and Co (III)/Co (II) as active sites on the cathode surface promoted the in-situ decomposition of H2O2 to form reactive oxygen species (ROS). •OH and O2- were confirmed to be the major degradation pollutants of ROS. Furthermore, density functional theory (DFT) was used to predict the reaction sites of 2,4-DCP, and its possible degradation pathways were proposed. The toxicity of intermediate products was evaluated and decreased after degradation. In addition, the eight cycle experiments and the degradation of other typical contaminants demonstrated the satisfactory stability and applicability of the synthetic cathode. This study presents the preparation of an efficient and stable EF cathode, further promoting the application of iron-based composites in wastewater treatment.


Subject(s)
Carbon , Water Pollutants, Chemical , Carbon/chemistry , Reactive Oxygen Species , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Water Pollutants, Chemical/chemistry , Phenols , Electrodes
12.
Am J Orthod Dentofacial Orthop ; 164(4): 462-463, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37758398
13.
Int J Mol Sci ; 24(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37686051

ABSTRACT

The CRISPR/Cas9 system is extensively used for plant gene editing. This study developed an efficient CRISPR/Cas9 system for Chinese kale using multiple sgRNAs and two promoters to create various CRISPR/Cas9 vectors. These vectors targeted BoaZDS and BoaCRTISO in Chinese kale protoplasts and cotyledons. Transient transformation of Chinese kale protoplasts was assessed for editing efficiency at three BoaZDS sites. Notably, sgRNA: Z2 achieved the highest efficiency (90%). Efficiency reached 100% when two sgRNAs targeted BoaZDS with a deletion of a large fragment (576 bp) between them. However, simultaneous targeting of BoaZDS and BoaCRTISO yielded lower efficiency. Transformation of cotyledons led to Chinese kale mutants with albino phenotypes for boazds mutants and orange-mottled phenotypes for boacrtiso mutants. The mutation efficiency of 35S-CRISPR/Cas9 (92.59%) exceeded YAO-CRISPR/Cas9 (70.97%) in protoplasts, and YAO-CRISPR/Cas9 (96.49%) surpassed 35S-CRISPR/Cas9 (58%) in cotyledons. These findings introduce a strategy for enhancing CRISPR/Cas9 editing efficiency in Chinese kale.


Subject(s)
Brassica , RNA, Guide, CRISPR-Cas Systems , Brassica/genetics , Gene Editing
14.
Water Res ; 245: 120656, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37748345

ABSTRACT

The assessment of antimicrobial resistance (AMR) risk by DNA-based techniques mainly relies on total bacterial DNA. In this case, AMR risk recognition is restricted to the genotype level, lacking crucial phenotypic information, such as the distribution of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in dead and viable bacteria. This limitation hinders the recognition of AMR behavior. Herein, based on propidium monoazide (PMA) shielding method, this work firstly quantified the intracellular ARGs/MGEs in viable and dead bacteria, and the impact of viable bacteria composition on the formation of intracellular/extracellular polymeric substance-related /cell-free ARGs (i/e/cARGs) and MGEs (i/e/cMGEs) in aerobic granular sludge (AGS). The shielding efficiency of PMA against dead bacteria was optimized to be as high as 97.5% when the MLSS of AGS was 2.0 g/L. Under antibiotic stimulation, 29.0% ∼ 49.0% of iARGs/iMGEs were carried by viable bacteria, and the remaining proportion were carried by dead bacteria. 18 out of the top 20 dominant genera showed a change in abundance by more than 1% after PMA treatment. 29 viable hosts were identified to associate with 52 iARGs, of which 28 and 15 hosts were also linked to 40 eARGs and 26 cARGs. Also, partial least-squares path model and variance partitioning analysis disclosed that viable bacteria and i/e/cMGEs had a positive effect on i/e/cARGs, with both contributing as much as 64.5% to the total ARGs enrichment. These results better visualized the AMR risk carried by viable bacteria and the categories of viable hosts. This work provides a novel insight into analyzing the actual AMR risk and viable hosts, helping to the reduction and control of AMR in wastewater treatment plants.

15.
Environ Sci Technol ; 57(40): 15065-15075, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37772420

ABSTRACT

An integrated anaerobic digestion system for the simultaneous removal of carbon and nitrogen from fish sludge was developed by coupling iron sludge supplementation with intermittent aeration. In terms of nitrogen removal, Fe(III) in iron sludge could trigger Feammox reactions and intermittent aeration could drive the Fe(II)/Fe(III) cycle to sustain continuous ammonia removal. Mass balance analysis suggested that nitrate was the main product of Feammox, which was subsequently removed through heterotrophic denitrification. In terms of carbon removal, the Fe(III)-induced dissimilatory iron reduction (DIR) process significantly promoted fish sludge hydrolysis and provided more simple organics for methanogens and denitrifiers, but aeration showed a negative impact on methanogenesis. To promote nitrogen removal and avoid serious methanogenesis inhibition, different aeration intensities were studied. Results showed that compared with the control without aeration or iron sludge addition, aeration for 5 min every 3 days (150 mL/min) contributed to a 29.0% lower NH4+-N concentration and a 12.1% lower total chemical oxygen demand level on day 28, and the decline in methane yield was acceptable (only 13.5% lower). Simultaneous methanogenesis, Feammox, and denitrification in a single reactor treating fish sludge were achieved, which provides a simple and low-cost strategy for the treatment of organic wastewater.


Subject(s)
Denitrification , Sewage , Iron , Bioreactors , Carbon , Nitrogen , Ferric Compounds , Waste Disposal, Fluid/methods
16.
IEEE Trans Image Process ; 32: 6332-6345, 2023.
Article in English | MEDLINE | ID: mdl-37506026

ABSTRACT

In a typical image inpainting task, the location and shape of the damaged or masked area is often random and irregular. The vanilla convolutions widely used in learning-based inpainting models treat all spatial features as valid and share parameters across regions, making it difficult for them to cope with those irregular damages, and models tend to produce inpainting results with color discrepancy and blurriness. In this paper, we propose a novel Context Adaptive Network (CANet) to address this issue. The main idea of the proposed CANet is able to generate different weights depending on the miscellaneous input, which may help to complement images with multiple broken forms in a flexible way. Specifically, the proposed CANet has two novel context adaptive modules, namely, the context adaptive block (CAB) and the cross-scale contextual attention (CSCA), which utilize attention mechanisms to cope with diverse content breakdowns. The proposed CAB, during the forward propagation, uses an adaptive term to determine the importance between adaptive term and convolution kernel, so as to dynamically balance features based on the degree of breakage (confidence level or soft mask), and the overall calculation is formulated as a classic convolution implementation with an additional attention term to describe local structure. Besides, the proposed CSCA, not only takes advantage of the contextual attention module, but also considers cross-scale information transfer to generate reasonable features for damaged areas, thus alleviating the inefficiency of the long-range modeling capability of convolutional neural networks. Qualitative and quantitative experiments show that our method performs better than state-of-the-arts, producing clearer, more coherent and visually plausible inpainting results. The code can be found at github.com/dengyecode/CANet_image_inpainting.

17.
World J Clin Cases ; 11(18): 4258-4266, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37449226

ABSTRACT

In the diagnosis and treatment of plastic surgery, there are structural processing problems, such as positioning, moving, and reconstructing complex three-dimensional structures. Doctors operate according to their own experience, and the inability to accurately locate these structures is an important problem in plastic surgery. Emerging digital technologies such as virtual reality, augmented reality, and three-dimensional printing are widely used in the medical field, particularly in plastic surgery. This article reviews the development of these three technical concepts, introduces the technical elements and specific applications required in plastic surgery, summarizes the application status of the three technologies in plastic surgery, and summarizes prospects for future development.

18.
Ageing Res Rev ; 89: 101981, 2023 08.
Article in English | MEDLINE | ID: mdl-37302756

ABSTRACT

Inflammatory arthritis, primarily including rheumatoid arthritis, osteoarthritis and ankylosing spondylitis, is a group of chronic inflammatory diseases, whose general feature is joint dysfunction with chronic pain and eventually causes disability in older people. To date, both Western medicine and traditional Chinese medicine (TCM) have developed a variety of therapeutic methods for inflammatory arthritis and achieved excellent results. But there is still a long way to totally cure these diseases. TCM has been used to treat various joint diseases for thousands of years in Asia. In this review, we summarize clinical efficacies of TCM in inflammatory arthritis treatment after reviewing the results demonstrated in meta-analyses, systematic reviews, and clinical trials. We pioneered taking inflammatory arthritis-related cell targets of TCM as the entry point and further elaborated the molecular targets inside the cells of TCM, especially the signaling pathways. In addition, we also briefly discussed the relationship between gut microbiota and TCM and described the role of drug delivery systems for using TCM more accurately and safely. We provide updated and comprehensive insights into the clinical application of TCM for inflammatory arthritis treatment. We hope this review can guide and inspire researchers to further explore mechanisms of the anti-arthritis activity of TCM and make a great leap forward in comprehending the science of TCM.


Subject(s)
Arthritis, Rheumatoid , Drugs, Chinese Herbal , Osteoarthritis , Humans , Aged , Medicine, Chinese Traditional/methods , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Arthritis, Rheumatoid/drug therapy , Treatment Outcome , Osteoarthritis/drug therapy
19.
Food Res Int ; 170: 112995, 2023 08.
Article in English | MEDLINE | ID: mdl-37316021

ABSTRACT

Glucoraphanin (GRA) is an aliphatic glucosinolate (GSL), and its hydrolysis product has powerful anticancer activity. ALKENYL HYDROXALKYL PRODUCING 2 (AOP2) gene, encodes a 2-oxoglutarate-dependent dioxygenase, which can catalyze GRA to form gluconapin (GNA). However, GRA only present in trace amounts in Chinese kale. To increase the content of GRA in Chinese kale, three copies of BoaAOP2 were isolated and edited using CRISPR/Cas9 system. The content of GRA was 11.71- to 41.29-fold (0.082-0.289 µmol g-1 FW) higher in T1 generation of boaaop2 mutants than in wild-type plants, and this was accompanied by an increase in the GRA/GNA ratio and reductions in the content of GNA and total aliphatic GSLs. BoaAOP2.1 is an effective gene for the alkenylation of aliphatic GSLs in Chinese kale. Overall, targeted editing of CRISPR/Cas9-mediated BoaAOP2s altered aliphatic GSL side-chain metabolic flux and enhanced the GRA content in Chinese kale, suggesting that metabolic engineering of BoaAOP2s has huge potential in improving nutritional quality of Chinese kale.


Subject(s)
Brassica , Brassica/genetics , Glucosinolates , CRISPR-Cas Systems
20.
Molecules ; 28(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37375335

ABSTRACT

Malabar spinach (Basella alba), amaranth (Amaranthus tricolor), and sweet potato (Ipomoea batatas) are leafy vegetables found in Southwest China. The variation of chlorophyll, carotenoids, ascorbic acid, total flavonoids, phenolic compounds, and antioxidant capacity was studied in the leaves and stems of the three vegetables. The content of main health-promoting compounds and the antioxidant capacity in the leaves were higher than that in the stems, indicating that the leaves of the three vegetables possess greater nutritional value. The trend of total flavonoids in all three vegetables was similar to the trend of antioxidant capacity, suggesting that the total flavonoids may be the major antioxidants wihin these vegetables. Eight individual phenolic compounds were detected in three different vegetables. The most abundant levels of individual phenolic compounds in the leaves and stems of malabar spinach, amaranth, and sweet potato were 6'-O-feruloyl-d-sucrose (9.04 and 2.03 mg g-1 DW), hydroxyferulic acid (10.14 and 0.73 mg g-1 DW), and isorhamnetin-7-O-glucoside (34.93 and 6.76 mg g-1 DW), respectively. Sweet potato exhibited a higher total and individual phenolic compound content compared to malabar spinach and amaranth. Overall, the results demonstrate that the three leafy vegetables possess high nutritional value, and could be used not only for consumption but also in various other fields, including medicine and chemistry.


Subject(s)
Antioxidants , Vegetables , Antioxidants/chemistry , Vegetables/chemistry , Flavonoids/analysis , Ascorbic Acid/analysis , Phenols/analysis , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...