ABSTRACT
Palmitoleic acid, a monounsaturated fatty acid which could affect glucose and lipid metabolism and reduce insulin resistance has two isomers, i.e. cis-palmitoleic acid (cPOA) and trans-palmitoleic acid (tPOA). However, the pharmacokinetic, metabolic transformation and structure-activity relationship of the two isomers have not been reported. A precise and accurate ultra performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) method was developed to determine cPOA and tPOA simultaneously. Both the cPOA and tPOA were administered i.g. (intragastric gavage) to rats at 75 mg/kg. Serum samples were collected and analyzed for the two isomers by UPLC-MS/MS on a reverse-phase BDS C18 column equilibrated and eluted with water (A) and acetonitrile (B) at a flow rate of 0.3 mL/min. The calibration curves for cPOA and tPOA were linear over the range 0.1-12 µg/mL. Analytes were monitored by selected-reaction monitoring in negative electrospray ionization mode. The Tmax of cPOA was 0.94 ± 0.44 h and the Cmax 8.17 ± 1.97 µg/L, and the Tmax and Cmax of tPOA were 1.50 ± 0.98 h and 14.77 ± 11.91 µg/L, respectively. AUC0-24 h of cPOA and tPOA were 59.45 ± 29.83 and 113.88 ± 72.25 mg/L·h. The method was applied in pharmacokinetic study of cPOA and tPOA in rat serum successfully. Besides, the concentrations of cPOA and tPOA in rat serums were observed fluctuating with a consistent trend, which may be due to reciprocal bio-convert in the body.
Subject(s)
Fatty Acids, Monounsaturated , Tandem Mass Spectrometry , Acetonitriles , Animals , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Glucose , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry/methods , WaterABSTRACT
Background: Conopeptides from cone snail venom have aroused great interest related to the discovery of novel bioactive candidates, due to their excellent prospects for the treatment of various health problems such as pain, addiction, psychosis and epilepsy. In order to explore novel biopeptides, we investigated the structure and function of five novel conopeptides isolated from the venom of Conus marmoreus from South China Sea. Methods: C. marmoreus crude venom was prepared, fractionated and purified by HPLC system. The primary sequences of the five novel disulfide-poor conopeptides Mr-1 to Mr-5 were identified by comprehensive analysis of de novo MALDI-TOF tandem mass spectrometry and Edman degradation data. In order to investigate their function, these five conopeptides were synthesized by Fmoc-SPPS chemistry, and their biological effects at several heterologous rat nicotinic acetylcholine receptor (nAChR) subtypes (α1ß1δε, α3ß2, α3ß4, α4ß2) were determined by electrophysiological technique. Results: Five novel disulfide-poor conopeptides were identified and named as follows: Mr-1 (DWEYHAHPKPNSFWT), Mr-2 (YPTRAYPSNKFG), Mr-3 (NVIQAPAQSVAPP NTST), Mr-4 [KENVLNKLKSK(L/I)] and Mr-5 [NAVAAAN(L/I)PG(L/I)V]. None of them contains a disulfide bond. The sequences of conopeptides Mr-2 to Mr-5 do not belong to any category of the known disulfide-poor conopeptides. No significant activity against the above nAChR subtypes were observed for the five conopeptides at 100 µM. Conclusion: We purified and structurally characterized five novel disulfide-poor conopeptides from C. marmoreus crude venom and first investigated their nAChR inhibitory effects. This work expanded our knowledge on the structure and function of disulfide-poor conopeptides from this cone snail venom.
ABSTRACT
Background: Conopeptides from cone snail venom have aroused great interest related to the discovery of novel bioactive candidates, due to their excellent prospects for the treatment of various health problems such as pain, addiction, psychosis and epilepsy. In order to explore novel biopeptides, we investigated the structure and function of five novel conopeptides isolated from the venom of Conus marmoreus from South China Sea. Methods: C. marmoreus crude venom was prepared, fractionated and purified by HPLC system. The primary sequences of the five novel disulfide-poor conopeptides Mr-1 to Mr-5 were identified by comprehensive analysis of de novo MALDI-TOF tandem mass spectrometry and Edman degradation data. In order to investigate their function, these five conopeptides were synthesized by Fmoc-SPPS chemistry, and their biological effects at several heterologous rat nicotinic acetylcholine receptor (nAChR) subtypes (α1β1δε, α3β2, α3β4, α4β2) were determined by electrophysiological technique. Results: Five novel disulfide-poor conopeptides were identified and named as follows: Mr-1 (DWEYHAHPKPNSFWT), Mr-2 (YPTRAYPSNKFG), Mr-3 (NVIQAPAQSVAPP NTST), Mr-4 [KENVLNKLKSK(L/I)] and Mr-5 [NAVAAAN(L/I)PG(L/I)V]. None of them contains a disulfide bond. The sequences of conopeptides Mr-2 to Mr-5 do not belong to any category of the known disulfide-poor conopeptides. No significant activity against the above nAChR subtypes were observed for the five conopeptides at 100 µM. Conclusion: We purified and structurally characterized five novel disulfide-poor conopeptides from C. marmoreus crude venom and first investigated their nAChR inhibitory effects. This work expanded our knowledge on the structure and function of disulfide-poor conopeptides from this cone snail venom.(AU)