ABSTRACT
Dengue, chikungunya and Zika viruses share similar disease features, rendering them difficult to distinguish clinically. Incapacitating arthralgia/arthritis is a specific manifestation associated with chikungunya virus infection. However, the profile of arthralgia/arthritis in Zika virus (ZIKV) cases has not been well characterized. Articles were extracted from PubMed and Scopus databases reporting original data from patients with arthralgia/arthritis, according to the Cochrane Collaboration. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, 137 articles reporting ZIKV-associated joint symptoms were reviewed. Arthralgia was more frequently reported (n = 124 from case studies, n = 1779 from population-based studies) than arthritis (n = 7 and n = 121, respectively). Arthralgia was resolved in <1 week in 54%, and within 1-2 weeks in 40% of cases. The meta-analysis of cases in population-based studies identified a pooled prevalence of 53.55% for arthralgia. The pooled prevalence of arthralgia/arthritis during outbreaks depended on the geographic location, with a higher joint symptom burden observed in the Americas compared to South East Asia (Brazil: 60.79%; Puerto Rico: 68.89% and South East Asia: 26.46%). We conclude that non-specific constitutional arthralgia is the most common joint manifestation during ZIKV infection, being present in nearly half of cases but resolving by two weeks in >90% of these. We found no evidence of chronic rheumatic manifestations following ZIKV infection.
Subject(s)
Arthralgia/epidemiology , Arthritis/epidemiology , Zika Virus Infection/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Arthralgia/virology , Arthritis/virology , Brazil/epidemiology , Disease Outbreaks , Female , Humans , Joints/pathology , Male , Middle Aged , Prevalence , Young Adult , Zika Virus , Zika Virus Infection/pathologyABSTRACT
Background: Mathematical modeling is useful in the analysis, prediction, and optimization of an enzymatic process. Unlike the conventional modeling methods, Monte Carlo method has special advantages in providing representations of the molecule's spatial distribution. However, thus far, Monte Carlo modeling of enzymatic system is namely based on unimolecular basis, not suitable for practical applications. In this research, Monte Carlo modeling is performed for enzymatic hydrolysis of lactose for the purpose of real-time applications. Results: The enzyme hydrolysis of lactose, which is conformed to MichaelisMenten kinetics, is modeled using the Monte Carlo modeling method, and the simulation results prove that the model predicts the reaction kinetics very well. Conclusions: Monte Carlo modeling method can be used to model enzymatic reactions in a simple way for real-time applications.