Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(17): 5260-5269, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38639406

ABSTRACT

High-temperature affordable flexible polymer-based pressure sensors integrated with repeatable early fire warning service are strongly desired for harsh environmental applications, yet their creation remains challenging. This work proposed an approach for preparing such advanced integrated sensors based on silver nanoparticles and an ammonium polyphosphate (APP)-modified laminar-structured bulk wood sponge (APP/Ag@WS). Such integrated sensors demonstrated excellent fire warning performance, including a short response time (minimum of 0.44 s), a long-lasting alarm time (>750 s), and reliable repeatability. Moreover, it achieved high-temperature affordable flexible pressure sensing that exhibited an almost unimpaired working range of 0-7.5 kPa and a higher sensitivity (in the low-pressure range, maximum to 226.03 kPa-1) after fire. The high stability was attributed to reliable structural elasticity, and the wood-derived amorphous carbon is capable of repeatable fire warnings. Finally, a Ag@APP/WS-based wireless fire alarm system that realized reliable house fire accident detection was demonstrated, showing great promise for smart firefighting application.

2.
Environ Res ; 248: 118263, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38281564

ABSTRACT

With the increase of sustainable development goal, the bio-based adsorption materials with high and selective dye removal are important for water treatment in the dyeing industry. In this paper, a bio-based adsorption foam composed of metal-organic frameworks (MOF) and polyethyleneimine (PEI)-modified cellulose was prepared by a three-step process, i.e., PEI modification of cellulose fibers (PC), MOF decoration of PEI-modified cellulose (MIL-53@PC), and in-situ foaming with polyurethane. PEI modification provides cellulose fiber with more active sites for both dye adsorption and MOF bonding. We found that MIL-53 crystals were tightly bonded on the surface of PC through hydrogen bonding. Because of the abundant adsorption sites (e.g., amines, iron oxide group), the MIL-53@PC demonstrated high adsorption capacity and selectivity for anionic dye (e.g., 936.5 mg/g for methyl orange) through electrostatic interaction and hydrogen bonding. Finally, MIL-53@PC particles were blended with a waterborne polyurethane prepolymer to prepare a three-dimensional hydrophilic foam (MIL-53@PC/PUF), which not only maintained high adsorption capacity and selectivity of MIL-53@PC and also improved its recyclability and reusability. The MIL-53@PC/PUF offers a promising solution for dye wastewater treatment.


Subject(s)
Cellulose/analogs & derivatives , Metal-Organic Frameworks , Polyethyleneimine/analogs & derivatives , Water Pollutants, Chemical , Coloring Agents/chemistry , Adsorption , Polyethyleneimine/chemistry , Polyurethanes , Water Pollutants, Chemical/chemistry
3.
Molecules ; 28(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37687133

ABSTRACT

Plant essential oils are widely used in food, medicine, cosmetics, and other fields because of their bacteriostatic properties and natural sources. However, the bacteriostatic range of unilateral essential oils is limited, and compound essential oil has become an effective way to improve the antibacterial properties of unilateral essential oils. In this study, based on the analysis of the antibacterial properties of Chinese cinnamon bark oil and oregano oil, the proportion and concentration of the compound essential oil were optimized and designed, and the antibacterial activity of the compound essential oil was studied. The results showed that the antibacterial activity of Chinese cinnamon bark oil was higher than that of oregano oil. The compound essential oil prepared by a 1:1 ratio of Chinese cinnamon bark oil and oregano oil with a concentration of 156.25 ppm showed an excellent antibacterial activity against Escherichia coli and Staphylococcus aureus. The GC-MS results showed that cinnamaldehyde was the main antibacterial component of Chinese cinnamon bark essential oil, and carvacrol and thymol in oregano oil were the main antibacterial components.


Subject(s)
Anti-Bacterial Agents , Oils, Volatile , Anti-Bacterial Agents/pharmacology , Escherichia coli , Oils, Volatile/pharmacology , Thymol/pharmacology
4.
Molecules ; 28(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37764274

ABSTRACT

Zeolitic imidazolate frameworks (ZIFs) can be used as an adsorbent to efficiently adsorb organic pollutants. However, ZIF nanoparticles are easy to form aggregates, hampering the effective and practical application in practical adsorption. In this study, the ZIF-8 was successfully loaded onto lignocellulose (LC) to further produce ZnO/LC by in situ growth method and hydrothermal treatment, and then Fe3O4 nanoparticles (Fe3O4 NPs) were loaded onto ZnO/LC to prepare magnetic Fe3O4/ZnO/LC adsorbent for removing tetracycline (TC) and congo red (CR) pollutants from aqueous solution. The adsorption properties of the adsorbent were systematically analyzed for different conditions, such as adsorbent dosage, solution pH, contact time, temperature and initial concentration. The experimental data were fitted using adsorption kinetic and isotherm models. The results showed that the pseudo-second-order model and Sips model were well fitted to the adsorption kinetic and adsorption isotherm, respectively. The adsorption capacities of TC and CR reached the maximum value of 383.4 mg/g and 409.1 mg/g in experimental conditions. The mechanism of the removal mainly includes electrostatic interaction, hydrogen bonding and π-π stacking. This novel adsorbent could be rapidly separated from the aqueous solution, suggesting its high potential to remove pollutants in wastewater.

5.
Plants (Basel) ; 12(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37765423

ABSTRACT

Alnus cremastogyne is a rapidly growing broad-leaved tree species that is widely distributed in southwest China. It has a significant economic and ecological value. However, with the expansion of the planting area, the influence of phenotypic variation and differentiation on Alnus cremastogyne has increased, resulting in a continuous decline in its genetic quality. Therefore, it is crucial to investigate the phenotypic variation of Alnus cremastogyne and select excellent breeding materials for genetic improvement. Herein, four growth-related phenotypic traits (diameter at breast height, the height of trees, volume, height under the branches) and twelve reproductive-related phenotypic traits (fresh weight of single cone, dry weight of single cone, seed weight per plant, thousand kernel weight, cone length, cone width, cone length × cone width, fruit shape index, seed rate, germination rate, germination potential, germination index) of 40 clones from four provenances were measured and analyzed. The phenotypic variation was comprehensively evaluated by correlation analysis, principal component analysis and cluster analysis, and excellent clones were selected as breeding materials. The results revealed that there were abundant phenotypic traits variations among and within provenances. Most of the phenotypic traits were highly significant differences (p < 0.01) among provenances. The phenotypic variation among provenances (26.36%) was greater than that of within provenances clones (24.80%). The average phenotypic differentiation coefficient was accounted for 52.61% among provenances, indicating that the phenotypic variation mainly came from among provenances. The coefficient of variation ranged from 9.41% (fruit shape index) to 97.19% (seed weight per plant), and the repeatability ranged from 0.36 (volume) to 0.77 (cone width). Correlation analysis revealed a significantly positive correlation among most phenotypic traits. In principal component analysis, the cumulative contribution rate of the first three principal components was 79.18%, representing the main information on the measured phenotypic traits. The cluster analysis revealed four groups for the 40 clones. Group I and group II exhibited better performance phenotypic traits as compared with group III and group IV. In addition, the four groups are not clearly clustered following the distance from the provenance. Employing the multi-trait comprehensive evaluation method, 12 excellent clones were selected, and the average genetic gain for each phenotypic trait ranged from 4.78% (diameter at breast height) to 32.05% (dry weight of single cone). These selected excellent clones can serve as candidate materials for the improvement and transformation of Alnus cremastogyne seed orchards. In addition, this study can also provide a theoretical foundation for the genetic improvement, breeding, and clone selection of Alnus cremastogyne.

6.
Int J Biol Macromol ; 253(Pt 2): 126752, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37678694

ABSTRACT

Herein, a novel magnetic adsorbent (BC/AA/MN@Fe3O4) was successfully prepared from waste bamboo fiber tissue and montmorillonite, and subsequently applied for the highly selective removal of malachite green (MG, removal efficiency = 97.3 %) from the mixed dye solution of MG with methyl orange (MO, removal efficiency = 4.5 %). The magnetic adsorbent has a high porosity with abundant mesopores. In the single dye MG solution, the adsorbent could effectively remove MG over a wide pH range from 4 to 10, and the maximum adsorption capacity (qmax) was 2282.3 mg/g. Moreover, the magnetic adsorbent could remove MG from various solutions including mixed dye solution, high salinity solution, and real river water dye solution. The thermodynamic results proved that the adsorption process of MG was spontaneous and endothermic. The adsorption of MG was due to the comprehensive effects of electrostatic attraction, hydrogen bonding interactions and ions exchange, between the adsorbent and MG. Furthermore, the BC/AA/MN@Fe3O4 exhibited an excellent reusability with adsorption efficiency above 53.4 % after five consecutive cycles. Therefore, the prepared magnetic nanocellulose-based adsorbent was expected to be a promising material for highly selective adsorption and separation of MG from mixed dye solution.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Rosaniline Dyes , Thermodynamics , Adsorption , Magnetic Phenomena , Hydrogen-Ion Concentration , Kinetics
7.
Int J Biol Macromol ; 249: 126118, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37541474

ABSTRACT

Metal-organic frames (MOFs) have been recognized as one of the best candidates in the remediation of aqueous contaminants, while the fragile powder shape restricts the practical implementation. In this work, a shapeable, rebuildable, and multifunctional MOF composite (MIL-53@CF) was prepared from MIL-53 (Fe) and cellulose fiber (CF) using a simple ultrasonic method for adsorption and photocatalytic degradation of organic pollutants in wastewater. The results showed MIL-53(Fe) crystals were uniformly growth on CF surfaces and bonded with surface nanofibrils of CF through physical crosslinking and hydrogen bonding. Because of the high bonding strength, the MIL-53@CF composite exhibited an excellent compressive strength (3.53 MPa). More importantly, the MIL-53@CF composite was rebuildable through mechanical destruction followed by re-ultrasonication, suggesting the excellent reusability of MIL-53@CF for water remediation. The MIL-53@CF composite also had high adsorption capacities for methyl orange (884.6 mg·g-1), methylene blue (198.3 mg·g-1), and tetracycline (106.4 mg·g-1). MIL-53@CF composite could degrade TC through photocatalysis. The photocatalytic degradation mechanism was attributed to the Fe(II)/Fe(III) transform cycle reaction of MIL-53 crystal located on MIL-53@CF. Furthermore, the mechanical property and remoldability of MIL-53@CF composite increased its practicability. Comprehensively, MIL-53@CF composite provided a possible strategy to practically apply MOF in the remediation of aqueous contaminants.


Subject(s)
Metal-Organic Frameworks , Water Pollutants, Chemical , Metal-Organic Frameworks/chemistry , Ferric Compounds , Cellulose , Ultrasonics , Water Pollutants, Chemical/chemistry , Water
8.
Environ Sci Pollut Res Int ; 30(41): 93817-93829, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37523089

ABSTRACT

Dye-contaminated water has caused a worldwide pollution, which is threatening aquatic organisms and human health. In this work, a pressure-driven foam adsorbent (PFA) was bioinspired from the tapestry turban for purifying the dye-contaminated water. The PFA was prepared using an one-step method from nanocellulose (NC), amino-functionalized ZIF-8 (ZIF-8-NH2), and high resilience polyurethane foam (PUF). It was applied to efficiently remove methyl orange (MO) and crystal violet (CV) dyes from dye-contaminated waste solutions. The maximum adsorption capacity of PFA for MO and CV was 225.9 mg/g (25 °C, pH = 2) and 41.6 mg/g (25 °C, pH = 10), respectively, which were acceptable as compared with the reported works. The dyes could be efficiently removed from various river water samples. After 5 cycles, the removal efficiencies of MO and CV decreased from 92.0% and 85.7% to 84.7% and 76.1%, respectively. Moreover, the PFA relied on pressure-driven force to release the purified water under a low pressure.


Subject(s)
Water Pollutants, Chemical , Water Purification , Humans , Coloring Agents/chemistry , Water/chemistry , Water Pollution , Water Purification/methods , Adsorption , Water Pollutants, Chemical/chemistry , Kinetics
9.
Sci Total Environ ; 878: 163185, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37004763

ABSTRACT

Vegetation restoration is a good way to improve soil quality and reduce erosion. However, the impact of vegetation restoration on soil quality in the dry-hot valley region has been overlooked for many years. This study aimed to reveal the effects of Pennisetum sinese (PS) and natural vegetation (NV) on soil quality and then to explore the feasibility of introducing PS for the vegetation restoration of the dry-hot valley region. The PS and NV restoration areas deserted land evolving from cultivated land (CL) have been established since 2011. The results showed that the soil properties were obviously improved by PS from the dry to wet seasons, except for the soil available phosphorous. The comprehensive soil quality indexes of the three typical seasons (dry, dry-wet, and wet) were determined by using nonlinear weighted additive (NLWA) based on the total dataset, significant dataset and minimum dataset (MDS). The results indicated that the comprehensive minimum dataset soil quality index (MDS-SQI) of the three typical seasons evaluate soil quality well. The soil quality of PS was significantly greater than that of CL and NV (P < 0.05), as shown by the MDS-SQI. Additionally, PS could maintain a stable soil quality in the three typical seasons, while both CL and NV had obvious fluctuations. In addition, the result of the generalized linear mode suggested that the vegetation type had the greatest impact on the soil quality (44.51 %). Comprehensively, vegetation restoration in the dry-hot valley region has a positive impact on the soil properties and quality. PS is a great candidate species for the early vegetation restoration in the dry-hot valley region. This work provides a reference for vegetation restoration and rational utilization of soil resources in degraded ecosystems in dry-hot valleys and other soil erosion areas.

10.
Gels ; 9(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36661806

ABSTRACT

In recent years, the scarcity of pure water resources has received a lot of attention from society because of the increasing amount of pollution from industrial waste. It is very important to use low-cost adsorbents with high-adsorption performance to reduce water pollution. In this work, a gel adsorbent with a high-adsorption performance on methylene blue (MB) and Cu(II) was prepared from bamboo nanocellulose (BCNF) (derived from waste bamboo paper) and montmorillonite nanosheet (MMTNS) cross-linked by polyethyleneimine (PEI). The resulting gel adsorbent was characterized by Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS), etc. The results indicated that the MB and Cu(II) adsorption capacities of the resulting gel adsorbent increased with the solution pH, contact time, initial concentration, and temperature before equilibrium. The adsorption processes of MB and Cu(II) fitted well with the fractal-like pseudo-second-order model. The maximal adsorption capacities on MB and Cu(II) calculated by the Sips model were 361.9 and 254.6 mg/g, respectively. The removal of MB and Cu(II) from aqueous solutions mainly included electrostatic attraction, ion exchange, hydrogen bonding interaction, etc. These results suggest that the resulting gel adsorbent is an ideal material for the removal of MB and Cu(II) from aqueous solutions.

11.
Int J Biol Macromol ; 230: 123251, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36639071

ABSTRACT

Supramolecular structure of cellulosic materials from microwave treatment were throughly investigated for production of lignin-containing nanocellulose. The results revealed that both the intermolecular and intramolecular hydrogen bonds were altered by microwave irradiation. Cellulose Iß was the main component in microwave treated bamboo (MTB) with smaller interplanar spacing, and the cellulose molecules were loosely connected resulting in a loose structure. Thereafter, MTB was used to produce lignin-containing nanocellulose by using oxalic acid dihydrate (OAD) to test the feasibility on its efficiency. The chemical consumed for the preparation of lignin-containing nanocellulose (LCN) with a comparable yield (68.08-82.33 %) from MTB was merely 1/10 that from conventional cellulosic materials, indicating the supramolecular structural changes of bamboo cellulose induced by microwave treatment provided suitable conditions for the subsequent hydrolysis of OAD to prepare LCN. The LCN was further added into the polyvinyl alcohol (PVA) matrix endowed excellent UV shielding property and thermal stability for the PVA/LCN films. This study was aimed to provide an environmentally friendly method on the production and application of LCN from bamboo by employing microwave treatment from the perspective of supramolecular level.


Subject(s)
Lignin , Microwaves , Lignin/chemistry , Cellulose/chemistry , Hydrolysis , Oxalic Acid , Polyvinyl Alcohol/chemistry
12.
Int J Biol Macromol ; 221: 224-237, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36084868

ABSTRACT

Since natural cellulose is mostly cellulose I and has a fibrous form, most cellulose-based adsorbents are fibrous/rod-shaped and exhibit the cellulose I crystal structure. This study reports a cellulose II-based spherical nanoparticle microcluster adsorbent (SNMA), synthesized from biomass by a bottom-up approach, for removing toxic hexavalent chromium (Cr(VI)). The basic structure of SNMA was investigated. Notably, the prepared adsorbent was a microcluster composed of spherical nanoparticles, while exhibiting cellulose II crystal structure, resulting in higher thermal stability and significantly enhanced adsorption performance. The adsorption process and mechanism of SNMA on Cr(VI) were studied in detail. The SNMA achieved a high adsorption capacity (225.94 mg/g) and receptor site density. The SNMA is expected to be used as a bio-based spherical nanoparticle microcluster adsorbent platform for the adsorption of different toxic substances by changing the surface functional groups of its components, spherical nanoparticles.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Cellulose/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Chromium/chemistry , Adsorption , Kinetics
13.
Article in English | MEDLINE | ID: mdl-34899950

ABSTRACT

METHODS: Individualized treatment of traditional Chinese medicine (TCM) provides a theoretical basis for the study of the personalized classification of complex diseases. Utilizing the TCM clinical electronic medical records (EMRs) of 7170 in patients with IS, a patient similarity network (PSN) with shared symptoms was constructed. Next, patient subgroups were identified using community detection methods and enrichment analyses were performed. Finally, genetic data of symptoms, herbs, and drugs were used for pathway and GO analysis to explore the characteristics of pathways of subgroups and to compare the similarities and differences in genetic pathways of herbs and drugs from the perspective of molecular pathways of symptoms. RESULTS: We identified 34 patient modules from the PSN, of which 7 modules include 98.48% of the whole cases. The 7 patient subgroups have their own characteristics of risk factors, complications, and comorbidities and the underlying genetic pathways of symptoms, drugs, and herbs. Each subgroup has the largest number of herb pathways. For specific symptom pathways, the number of herb pathways is more than that of drugs. CONCLUSION: The research of disease classification based on community detection of symptom-shared patient networks is practical; the common molecular pathway of symptoms and herbs reflects the rationality of TCM herbs on symptoms and the wide range of therapeutic targets.

14.
ACS Omega ; 6(39): 25702-25709, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34632226

ABSTRACT

Almond shell-modified urea-formaldehyde resins (AUF) were prepared in this study. The optimal addition amount of almond shells was selected by formaldehyde emission and wet shear strength. The activation energy (E a) values at different conversion rates and the reaction kinetics were estimated based on the Flynn-Wall-Ozawa method. The results indicated that almond shells can significantly reduce the formaldehyde emission and increase wet shear strength and thermal stability of the urea-formaldehyde resin adhesive. The optimal addition of almond shells is 3 wt %.

15.
ACS Omega ; 6(36): 23447-23459, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34549143

ABSTRACT

Human health is being threatened by cationic pollutants in wastewater, for example, methylene blue (MB) and Cu(II). Our research team successfully fabricated biofoam adsorbents from recycled bamboo waste that removed cationic pollutants via introducing bamboo fiber sources, i.e., bamboo fiber, bamboo α-cellulose fiber, and bamboo nanocellulose fiber, into a polyurethane (PU) foam matrix. The biofoam adsorbent with 1 g of nanocellulose (PUN1) presented high removal efficiencies for MB (95.52%) and Cu(II) (100%) in low cationic pollutant concentration aqueous solutions. The biofoam adsorbent with 1 g of bamboo fiber (PUB1) also displayed excellent removal efficiency for MB (98.61%) at pH 11. Meanwhile, 100% removal of Cu(II) was obtained by PUB1 at pH 7 (initial content = 15 mg/L). Furthermore, the PUN1 sample had excellent reusability, evidenced by 61.25% removal of MB after five adsorption-desorption cycles, suggesting that PUN1 is a promising renewable adsorbent for cationic pollutants. In addition, PUB1 is a low-cost adsorbent with good adsorption efficiencies for MB in weak alkaline solutions and Cu(II) in neutral aqueous solutions.

16.
ACS Appl Bio Mater ; 4(6): 5169-5179, 2021 06 21.
Article in English | MEDLINE | ID: mdl-35007000

ABSTRACT

Drying cellulose nanofibril (CNF) from aqueous suspensions often leads to aggregated fibril morphology, negatively affecting its performance in ensuing applications. In this work, we introduced a new solvent drying approach to acquire dry CNF from aqueous suspensions and subsequently pyrolyzed the CNF precursor to obtain carbonized CNF (CCNF) without loss of its fibrous morphology. The fibrous CCNF was dispersed homogeneously in polycaprolactone (PCL) thermoplastic resin, greatly enhancing PCL composite tensile performance. After being further mixed with carbon black (CB), the CCNF helped to minimize CB aggregation due to formation of interconnected three-dimensional (3D) structures. The CCNF/CB/PCL composite exhibited superior electrical conductivity ascribed to electrons transporting more efficiently among CB aggregates. The composite is also suitable for applications such as 3D printed electromagnetic interference (EMI) shielding and deformation sensing. Specifically, the 3D printed EMI shielding composite efficiently absorbed EM radiation in the frequency range of 4-26 GHz, and the 3D printed deformation sensor exhibited excellent sensitivity, durability, and flexibility in monitoring mechanical distortions. Herein, this study sheds light on the development of multifunctional conductive composites embedded with fibrous CCNF from sustainable resources.


Subject(s)
Cellulose , Polyesters , Cellulose/chemistry , Electric Conductivity , Polyesters/chemistry , Suspensions
17.
ACS Omega ; 5(33): 20943-20952, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32875229

ABSTRACT

Kinetics and thermogravimetric analysis of recent Phoebe zhennan wood (RZ) and ancient buried P. zhennan wood (ABZ) were investigated under a nitrogen atmosphere at different heating rates of 5, 10, 15, and 20 K/min. The activation energy values were estimated based on the Flynn-Wall-Ozawa model-free method, and then, the Coats-Redfern model-fitting method was used to predict the reaction mechanism. The best model of RZ for regions 1 and 2 was based on the diffusional and reaction order (second-order) mechanism, respectively, while a diffusional (Jander equation) mechanism is the best model for ABZ. The change in enthalpy and activation energy of the RZ was lower than that of the ABZ at different conversion rates. When the conversion rate was less than 0.4, the RZ may require lower thermal decomposition reaction energy, but the overall energy of thermal decomposition reactions and the degree of disorder was not much different.

18.
Molecules ; 25(5)2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32143361

ABSTRACT

In this work, ethyl acetate (EA) and trichloromethane (TR) extracts were extracted from Phoebe zhennan wood residues and the extracts were then applied to the preparation of UV shielding films (UV-SF). The results revealed that substances including olefins, phenols and alcohols were found in both EA and TR extracts, accounting for about 45% of all the detected substances. The two extracts had similar thermal stability and both had strong UV shielding ability. When the relative percentage of the extract is 1 wt% in solution, the extract solution almost blocked 100% of the UV-B (280-315 nm), and UV-A (315-400 nm). Two kinds of UV-SF were successfully prepared by adding the two extracts into polylactic acid (PLA) matrix. The UV-SF with the addition of 24 wt% of the extractive blocked 100% of the UV-B (280-315 nm) and more than 80% of the UV-A (315-400 nm). Moreover, the UV shielding performance of the UV-SF was still stable even after strong UV irradiation. Though the addition of extracts could somewhat decrease the thermal stability of the film, its effect on the end-use of the film was ignorable. EA extracts had less effect on the tensile properties of the films than TR extracts as the content of the extract reached 18%. The results of this study could provide fundamental information on the potential utilization of the extracts from Phoebe zhennan wood residues on the preparation of biobased UV shielding materials.


Subject(s)
Acetates/chemistry , Chloroform/chemistry , Plant Extracts/chemistry , Ultraviolet Rays , Wood/chemistry
19.
Mar Biotechnol (NY) ; 6(2): 138-47, 2004.
Article in English | MEDLINE | ID: mdl-15085408

ABSTRACT

Marine cnidarian-microalgal endosymbiosis is a form of intracellular association that contributes greatly to the high primary productivity of reefs; however, little is known about its molecular mechanisms. Since the ADP-ribosylation factor (ARF) family proteins are key regulators of host intracellular vesicle transport systems, which are critical to many endosymbiotic interactions, we set out to clone and characterize ARF proteins in the symbiotic sea anemone Aiptasia pulchella. Experiments indicated that at least 3 ARF protein classes (class I, class II and class III) were present and expressed as a single messenger RNA species in Aiptasia, with highest mRNA expression levels for apARF1, medium for apARF5, and lowest for apARF6. Quantitative analysis revealed a great reduction at both the RNA and the protein levels in apARF1, but not apARF5 and apARF6, in the symbiotic animals. The apARF1 protein was highly homologous in sequence to other known ARF1 proteins and displayed a Golgi-like localization pattern. Overall, our study identified apARF1 as a potential negative regulator of Aiptaisia-microalgal endosymbiosis.


Subject(s)
ADP-Ribosylation Factors/genetics , Dinoflagellida , RNA, Messenger/metabolism , Sea Anemones/genetics , Symbiosis , ADP-Ribosylation Factors/metabolism , Amino Acid Sequence , Animals , Base Sequence , Blotting, Northern , Cloning, Molecular , DNA Primers , Molecular Sequence Data , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sea Anemones/metabolism , Sequence Analysis, DNA , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL
...