Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38758446

ABSTRACT

Silicosis is an occupational lung disease because of exposure to silica dust in the workplace. Evidence on the spatiotemporal change of silicosis burden worldwide remains limited. This study utilized data extracted from the Global Burden of Disease Study 2019 to examine the numbers and age-standardized rates of incidence (ASIR), mortality (ASMR), and disability-adjusted life years (DALYs) caused by silicosis between 1990 and 2019. Average annual percentage changes (AAPCs) were calculated to evaluate the temporal trends of age-standardized indicators by sex, region, and socio-demographic index (SDI) since 1990. Results indicated an increase in new silicosis cases globally, rising by 64.61% from 84,426 in 1990 to 138,971 in 2019, with a sustained high number of DALYs attributed to this disease. Although the global age-standardized rates of incidence, mortality, and DALYs of silicosis have decreased since 1990, the number of new cases has increased in 168 countries and territories, and the ASIR of silicosis has also risen in 118 countries and territories, primarily in developing countries. Since 1990, the burden of silicosis among the elderly has significantly increased. Countries with higher SDI experienced a more rapid decline in the silicosis burden. Silicosis remains a public health problem that requires significant attention. Programs for prevention and elimination of this public health issue need to be established in more countries and territories. Protecting young workers from silica dust exposure is crucial to prevent the onset of silicosis in their later years and to reduce the disease burden among older workers.

2.
Environ Pollut ; 349: 123945, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38604306

ABSTRACT

Noise pollution has grown to be a major public health issue worldwide. We sought to profile serum metabolite expression changes related to occupational noise exposure by untargeted metabolomics, as well as to evaluate the potential roles of serum metabolites in occupational noise-associated arterial stiffness (AS). Our study involved 30 noise-exposed industrial personnel (Lipo group) and 30 noise-free controls (Blank group). The untargeted metabolomic analysis was performed by employing a UPLC-HRMS. The associations of occupational noise and significant differential metabolites (between Blank/Lipo groups) with AS were evaluated using multivariable-adjusted generalized linear models. We performed the least absolute shrinkage and selection operator regression analysis to further screen for AS's risk metabolites. We explored 177 metabolites across 21 categories significantly differentially expressed between Blank/Lipo groups, and these metabolites were enriched in 20 metabolic pathways. Moreover, 15 metabolites in 4 classes (including food, glycerophosphocholine, sphingomyelin [SM] and triacylglycerols [TAG]) were adversely associated with AS (all P < 0.05). Meanwhile, five metabolites (homostachydrine, phosphatidylcholine (PC) (32:1e), PC (38:6p), SM (d41:2) and TAG (45:1) have been proven to be useful predictors of AS prevalence. However, none of these 15 metabolites were found to have a mediating influence on occupational noise-induced AS. Our study reveals specific metabolic changes caused by occupational noise exposure, and several metabolites may have protective effects on AS. However, the roles of serum metabolites in noise-AS association remain to be validated in future studies.


Subject(s)
Metabolome , Occupational Exposure , Vascular Stiffness , Humans , Adult , Male , Middle Aged , Noise, Occupational/adverse effects , Metabolomics
3.
Int Arch Occup Environ Health ; 97(4): 473-484, 2024 May.
Article in English | MEDLINE | ID: mdl-38530481

ABSTRACT

OBJECTIVE: Whether coal mine dust exposure increases cardiovascular diseases (CVDs) risk was rarely explored. Our objective was to examine the association between coal mine dust exposure and cardiovascular risk. METHODS: We estimated cumulative coal mine dust exposure (CDE) for 1327 coal miners by combining data on workplace dust concentrations and work history. We used brachial-ankle pulse wave velocity (baPWV, a representative indicator of arterial stiffness) and ten-year atherosclerotic cardiovascular disease (ASCVD) risk to assess potential CVD risk, exploring their associations with CDE. RESULTS: Positive dose-response relationships of CDE with baPWV and ten-year ASCVD risk were observed after adjusting for covariates. Specifically, each 1 standard deviation (SD) increase in CDE was related to a 0.27 m/s (95% CI: 0.21, 0.34) increase in baPWV and a 1.29 (95% CI: 1.14, 1.46) elevation in OR (odds ratio) of risk of abnormal baPWV. Moreover, each 1 SD increase in CDE was associated with a 0.74% (95% CI: 0.63%, 0.85%) increase in scores of ten-year ASCVD and a 1.91 (95% CI: 1.62, 2.26) increase in OR of risk of ten-year ASCVD. When compared with groups unexposed to coal mine dust, significant increase in the risk of arterial stiffness and ten-year ASCVD in the highest CDE groups were detected. CONCLUSION: The study suggested that cumulative exposure to coal mine dust was associated with elevated arterial stiffness and ten-year ASCVD risk in a dose-response manner. These findings contribute valuable insights for cardiovascular risk associated with coal mine dust.


Subject(s)
Cardiovascular Diseases , Coal Mining , Occupational Exposure , Vascular Stiffness , Humans , Cardiovascular Diseases/epidemiology , Ankle Brachial Index , Pulse Wave Analysis , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Dust , Coal , China/epidemiology
4.
Sci Total Environ ; 921: 171123, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38387587

ABSTRACT

AIMS: We aimed to evaluate the association of occupational noise with metabolic syndrome (MetS) and its components, and to assess the potential role of miRNAs in occupational noise-associated MetS. METHODS: A total of 854 participants were enrolled in our study. Cumulative noise exposure (CNE) was estimated in conjunction with workplace noise test records and research participants' employment histories. Logistic regression models adjusted for potential confounders were used to assess the association of CNE and miRNAs with MetS and its components. RESULTS: We observed linear positive dose-response associations between occupational noise exposure and the prevalence of MetS (OR: 1.031; 95 % CI: 1.008, 1.055). And linear and nonlinear relationship were also found for the association of occupational noise exposure with high blood pressure (OR: 1.024; 95 % CI: 1.007, 1.041) and reduced high-density lipoprotein (OR: 1.051; 95 % CI: 1.031, 1.072), respectively. MiR-200a-3p, miR-92a-3p and miR-21-5p were inversely associated with CNE, or the prevalence of MetS and its components (all P < 0.05). However, we did not find any statistically significant mediation effect of miRNAs in the associations of CNE with MetS. Furthermore, the prevalence of bilateral hearing loss in high-frequency increased (OR: 1.036; 95 % CI: 1.008, 1.067) with CNE level rising, and participants with bilateral hearing loss in high-frequency had a significantly higher risk of MetS (OR: 1.727; 95 % CI: 1.048, 2.819). CONCLUSION: Our study suggests that occupational noise exposure is associated with MetS and its components, and the role of miRNAs in noise-induced increasing MetS risk needs to be confirmed in future studies.


Subject(s)
Hearing Loss, Noise-Induced , Metabolic Syndrome , MicroRNAs , Noise, Occupational , Occupational Exposure , Adult , Humans , Metabolic Syndrome/epidemiology , Hearing Loss, Bilateral , Hearing Loss, Noise-Induced/epidemiology , Noise, Occupational/adverse effects , China/epidemiology
5.
J Occup Environ Med ; 66(3): e106-e110, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38234094

ABSTRACT

OBJECTIVE: This study aimed to explore the relationship of work stress with anxiety and depression and the mediation of job satisfaction. METHODS: We conducted a survey among gas station workers in Wuhan, China. Multivariate and bootstrap mediating analyses were conducted. RESULTS: The rate of effort-reward imbalance, overcommitment (OC), anxiety, and depression were 22.9%, 29.2%, 20.1%, and 19.9%. Work stress was positively associated with anxiety ( ß = 0.213 [95% confidence interval (CI), 0.156-0.270] for logarithmic effort-reward ratio [LgERR] and ß = 0.563 [95% CI, 0.505-0.621] for OC) and depression ( ß = 0.291 [95% CI, 0.227-0.356] for LgERR and ß = 0.417 [95% CI, 0.351-0.483] for OC). The mediation of job satisfaction from LgERR and OC to anxiety and depression were 14.93%, 9.05%, 24.34%, and 19.85%. CONCLUSIONS: We should concern the anxiety and depression, and work stress status of workers and improve the situation by improving job satisfaction.


Subject(s)
Depression , Occupational Stress , Adult , Humans , Depression/epidemiology , Job Satisfaction , Occupational Stress/epidemiology , Anxiety/epidemiology , China/epidemiology , Surveys and Questionnaires , Reward , Stress, Psychological/epidemiology
7.
Environ Sci Pollut Res Int ; 30(34): 82686-82695, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37328723

ABSTRACT

Exposure to hot or cold temperatures was reported to be associated with increased mortality and morbidity of type 2 diabetes, but few studies have estimated the temporal trend and global burden of type 2 diabetes attributable to non-optimal temperature. Based on the Global Burden of Disease Study 2019, we collected data on the numbers and rates of deaths and disability-adjusted life years (DALYs) of type 2 diabetes attributed to non-optimal temperature. The joinpoint regression analysis was used to estimate the temporal trends of the age-standardized rate of mortality and DALYs from 1990 to 2019 by average annual percentage change (AAPC). From 1990 to 2019, globally, the numbers of deaths and DALYs of type 2 diabetes attributable to non-optimal temperature increased by 136.13% (95% (uncertainty interval) UI: 87.04% to 277.76%) and 122.26% (95% UI: 68.77% to 275.59%), with the number from 0.05 (95% UI: 0.02 to 0.07) million and 0.96 (95% UI: 0.37 to 1.51) million in 1990 to 0. 11 (95% UI: 0.07 to 0.15) million and 2.14 (95% UI: 1.35 to 3.13) million in 2019. The age-standardized mortality rate (ASMR) and DALYs rate (ASDR) of type 2 diabetes attributable to non-optimal temperature showed an increasing trend in the high temperature effect and lower (low, low-middle and middle) socio-demographic index (SDI) region, with AAPCs of 3.17%, 1.24%, 1.61%, and 0.79% (all P < 0.05), respectively. The greatest increased ASMR and ASDR were observed in Central Asia, followed by Western Sub-Saharan Africa and South Asia. Meanwhile, the contribution of type 2 diabetes burden attributable to high temperature gradually increased globally and in five SDI regions. In addition, the global age-specific rate of mortality and DALYs of type 2 diabetes attributable to non-optimal temperature for both men and women almost increased with age in 2019. The global burden of type 2 diabetes attributable to non-optimal temperature increased from 1990 to 2019, particularly in high temperature, regions with lower SDI, and the older population. Appropriate temperature interventions are necessary to curb climate change and increasing diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Global Burden of Disease , Male , Humans , Female , Quality-Adjusted Life Years , Diabetes Mellitus, Type 2/epidemiology , Temperature , Africa South of the Sahara/epidemiology , Global Health
8.
Front Public Health ; 11: 1106336, 2023.
Article in English | MEDLINE | ID: mdl-36866098

ABSTRACT

Background: Ambient carbon monoxide (CO) exposure is associated with increased mortality and hospitalization risk for total respiratory diseases. However, evidence on the risk of hospitalization for specific respiratory diseases from ambient CO exposure is limited. Methods: Data on daily hospitalizations for respiratory diseases, air pollutants, and meteorological factors from January 2016 to December 2020 were collected in Ganzhou, China. A generalized additive model with the quasi-Poisson link and lag structures was used to estimate the associations between ambient CO concentration and hospitalizations of total respiratory diseases, asthma, chronic obstructive pulmonary disease (COPD), upper respiratory tract infection (URTI), lower respiratory tract infection (LRTI), and influenza-pneumonia. Possible confounding co-pollutants and effect modification by gender, age, and season were considered. Results: A total of 72,430 hospitalized cases of respiratory diseases were recorded. Significant positive exposure-response relationships were observed between ambient CO exposure and hospitalization risk from respiratory diseases. For each 1 mg/m3 increase in CO concentration (lag0-2), hospitalizations for total respiratory diseases, asthma, COPD, LRTI, and influenza-pneumonia increased by 13.56 (95% CI: 6.76%, 20.79%), 17.74 (95% CI: 1.34%, 36.8%), 12.45 (95% CI: 2.91%, 22.87%), 41.25 (95% CI: 18.19%, 68.81%), and 13.5% (95% CI: 3.41%, 24.56%), respectively. In addition, the associations of ambient CO with hospitalizations for total respiratory diseases and influenza-pneumonia were stronger during the warm season, while women were more susceptible to ambient CO exposure-associated hospitalizations for asthma and LRTI (all P < 0.05). Conclusion: In brief, significant positive exposure-response relationships were found between ambient CO exposure and hospitalization risk for total respiratory diseases, asthma, COPD, LRTI, and influenza-pneumonia. Effect modification by season and gender was found in ambient CO exposure-associated respiratory hospitalizations.


Subject(s)
Asthma , Influenza, Human , Pulmonary Disease, Chronic Obstructive , Respiratory Tract Infections , Female , Humans , Carbon Monoxide , Influenza, Human/epidemiology , Time Factors , Respiratory Tract Infections/epidemiology , Asthma/epidemiology , Pulmonary Disease, Chronic Obstructive/epidemiology , China/epidemiology , Hospitalization
9.
Environ Sci Pollut Res Int ; 30(18): 53876-53886, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36867331

ABSTRACT

Based on nationally representative samples from US, we aimed to assess the associations of vitamins with hearing loss, vision disorder and sleep problem. A total of 25,312, 8425 and 24,234 participants were included in this study to investigate the relationship of vitamins with hearing loss, vision disorder and sleep problem from National Health and Nutrition Examination Survey, respectively. Vitamins including niacin, folic acid, vitamin B6, A, C, E and carotenoids were considered in our study. Logistic regression models were used to assess the associations between all included dietary vitamin intake concentrations and the prevalence of specific outcomes. Increased lycopene (odds ratio [OR]: 0.904, 95% confidence interval [CI]: 0.829-0.985) intake was associated with a deceased prevalence of hearing loss. Higher dietary intake of folic acid (OR: 0.637, 95% CI: 0.443-0.904), vitamin B6 (0.667, 0.465-0.947), alpha-carotene (0.695, 0.494-0.968), beta-carotene (0.703, 0.505-0.969) and lutein + zeaxanthin (0.640, 0.455-0.892) were associated with a decreased prevalence of vision disorder. The inversely associations of sleeping problem with niacin (OR: 0.902, 95% CI: 0.826-0.985), folic acid (0.882, 0.811-0.959), vitamin B6 (0.892, 0.818-0.973), vitamin C (0.908, 0.835-0.987), vitamin E (0.885, 0.813-0.963) and lycopene (0.919, 0.845-0.998) were also observed. Our findings provide evidence that increased specific vitamin intake is associated with decreased prevalence of hearing loss, vision disorder and sleep problem.


Subject(s)
Hearing Loss , Niacin , Sleep Wake Disorders , Humans , Vitamins , Lycopene , Nutrition Surveys , Vitamin A , Diet , Hearing Loss/epidemiology , Folic Acid , Vitamin K , Vitamin B 6 , Vision Disorders
SELECTION OF CITATIONS
SEARCH DETAIL
...