Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Transl Med ; 9(17): 1381, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34733933

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is the most common hematological malignancy in adult patients. Ferroptosis-related signatures have been shown to act as regulators of the progression of multiple cancer types, but the role of ferroptosis in AML remains to be elucidated. We performed the present study to preliminarily investigate the roles of ferroptosis-related genes (FRGs) in AML. METHODS: The transcriptome data of AML patients was downloaded from The Cancer Genome Atlas (TCGA) and the transcriptome data of normal samples was obtained from the Genotype-Tissue Expression (GTEx) database. FRGs were selected via public articles. Expression levels of FRGs between AML and normal samples were analyzed. The prognostic model based on FRGs was constructed via lasso regression. The expression levels and prognostic role of FRGs were identified from the risk model. We also performed validation experiments to verify the expression levels of the final selected genes via immunohistochemistry, polymerase chain reaction (PCR), and RNA-seq. Finally, we explored the associations between immune infiltration, drug sensitivity, and the selected FRGs. RESULTS: The transcriptome data of 151 AML samples were retrieved from TCGA and 70 bone marrow normal samples were retrieved from the GTEx database. Additionally, 23 FRGs were collected from the published articles. There were 22 differentially expressed FRGs, and among them, dipetidyl peptidase-4 (DPP4) (P= 0.011, HR =1.504), GPX4 (P=0.055, HR =1.569), LPCAT3 (P<0.001, HR =2.243), SLC7A11 (P=0.012, HR =2.243), and transferrin receptor (TFRC) (P=0.029, 0.774) had a significant influence on the prognosis of AML patients via lasso regression. The area under the curve (AUC) values of the 1-, 3-, and 5-year receiver operating characteristic (ROC) curves of the FRG signatures indicated that this model is novel and effective method for predicting the prognosis of AML patients. DPP4 (P<0.001) was overexpressed while LPCAT3 (P<0.001), TFRC (P<0.001), GPX4 (P<0.001), and SLC7A11 (P<0.001) were downregulated, further validation experiment results indicated that DPP4 was significantly downregulated but TFRC was upregulated in AML samples. Dysregulation of DPP4 and TFRC influence numbers of chemotherapy regimens sensitivity. CONCLUSIONS: DPP4 and TFRC act as biomarkers for predicting and diagnosing AML, and their expression levels also have significant correlations with drug resistance in AML.

2.
Ann Transl Med ; 9(17): 1386, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34733938

ABSTRACT

BACKGROUND: The tumor microenvironment (TME) has an essential role in tumorigenesis, progression, and therapeutic response in many cancers. Currently, the role of TME in acute myeloid leukemia (AML) is unclear. This study investigated the correlation between immune-related genes and prognosis in AML patients. METHODS: Transcriptome RNA-Seq data for 151 AML samples were downloaded from TCGA database (https://portal.gdc.cancer.gov/), and the immune related genes (irgs) were selected from Immport database. Bioinformatics screening was used to identify irgs for AML, and genes with a critical role in the prognosis of AML were selected for further analysis. To confirm the prognostic role of irgs in AML, we undertook protein-protein interaction (PPI) network analysis of the top 30 interacting genes. We then investigated associations between immune cell infiltration and prognosis in AML patients. Immunohistochemistry was used to validate protein expression levels between AML and normal bone marrow samples. Analysis of the drug sensitivity of the selected gene was then performed. RESULTS: The integrin lymphocyte function-associated antigen 1 (CD11A/CD18; ITGAL/ITGB2) was identified as the key immune-related gene that significantly influenced prognosis in AML patients. Overexpression of ITGB2 indicated poor prognosis in AML patients (P=0.007). Risk modeling indicated that a high-risk score led to poor outcomes (P=3.076e-08) in AML patients. The risk model showed accuracy for predicting prognosis in AML patients, with area under curve (AUC) at 1 year, 0.816; AUC at 3 years, 0.82; and AUC at 5 years, 0.875. In addition, we found that ITGB2 had a powerful influence on immune cell infiltration into AML TME. The results of immunohistochemistry showed that AML patients had significantly higher ITGB2 protein expression than normal samples. The AML patients were divided into 2 groups based on ITGB2 risk scores. Drug sensitivity test results indicated that the high-risk group was sensitive to cytarabine, axitinib, bosutinib, and docetaxel, but resistant to cisplatin and bortezomib. CONCLUSIONS: In the present study, we found that ITGB2 may be able to serve as a biomarker for assessing prognosis and drug sensitivity in AML patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...