Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Genomics ; 25(1): 467, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741036

ABSTRACT

BACKGROUND: Heat stress (HS) poses significant threats to the sustainability of livestock production. Genetically improving heat tolerance could enhance animal welfare and minimize production losses during HS events. Measuring phenotypic indicators of HS response and understanding their genetic background are crucial steps to optimize breeding schemes for improved climatic resilience. The identification of genomic regions and candidate genes influencing the traits of interest, including variants with pleiotropic effects, enables the refinement of genotyping panels used to perform genomic prediction of breeding values and contributes to unraveling the biological mechanisms influencing heat stress response. Therefore, the main objectives of this study were to identify genomic regions, candidate genes, and potential pleiotropic variants significantly associated with indicators of HS response in lactating sows using imputed whole-genome sequence (WGS) data. Phenotypic records for 18 traits and genomic information from 1,645 lactating sows were available for the study. The genotypes from the PorcineSNP50K panel containing 50,703 single nucleotide polymorphisms (SNPs) were imputed to WGS and after quality control, 1,622 animals and 7,065,922 SNPs were included in the analyses. RESULTS: A total of 1,388 unique SNPs located on sixteen chromosomes were found to be associated with 11 traits. Twenty gene ontology terms and 11 biological pathways were shown to be associated with variability in ear skin temperature, shoulder skin temperature, rump skin temperature, tail skin temperature, respiration rate, panting score, vaginal temperature automatically measured every 10 min, vaginal temperature measured at 0800 h, hair density score, body condition score, and ear area. Seven, five, six, two, seven, 15, and 14 genes with potential pleiotropic effects were identified for indicators of skin temperature, vaginal temperature, animal temperature, respiration rate, thermoregulatory traits, anatomical traits, and all traits, respectively. CONCLUSIONS: Physiological and anatomical indicators of HS response in lactating sows are heritable but highly polygenic. The candidate genes found are associated with important gene ontology terms and biological pathways related to heat shock protein activities, immune response, and cellular oxidative stress. Many of the candidate genes with pleiotropic effects are involved in catalytic activities to reduce cell damage from oxidative stress and cellular mechanisms related to immune response.


Subject(s)
Heat-Shock Response , Lactation , Polymorphism, Single Nucleotide , Animals , Female , Heat-Shock Response/genetics , Lactation/genetics , Swine/genetics , Phenotype , Quantitative Trait Loci , Genotype , Genomics
2.
BMC Genomics ; 20(1): 321, 2019 Apr 27.
Article in English | MEDLINE | ID: mdl-31029102

ABSTRACT

BACKGROUND: In this study we integrated the CNV (copy number variation) and WssGWAS (weighted single-step approach for genome-wide association) analyses to increase the knowledge about number of piglets born alive, an economically important reproductive trait with significant impact on production efficiency of pigs. RESULTS: A total of 3892 samples were genotyped with the Porcine SNP80 BeadChip. After quality control, a total of 57,962 high-quality SNPs from 3520 Duroc pigs were retained. The PennCNV algorithm identified 46,118 CNVs, which were aggregated by overlapping in 425 CNV regions (CNVRs) ranging from 2.5 Kb to 9718.4 Kb and covering 197 Mb (~ 7.01%) of the pig autosomal genome. The WssGWAS identified 16 genomic regions explaining more than 1% of the additive genetic variance for number of piglets born alive. The overlap between CNVR and WssGWAS analyses identified common regions on SSC2 (4.2-5.2 Mb), SSC3 (3.9-4.9 Mb), SSC12 (56.6-57.6 Mb), and SSC17 (17.3-18.3 Mb). Those regions are known for harboring important causative variants for pig reproductive traits based on their crucial functions in fertilization, development of gametes and embryos. Functional analysis by the Panther software identified 13 gene ontology biological processes significantly represented in this study such as reproduction, developmental process, cellular component organization or biogenesis, and immune system process, which plays relevant roles in swine reproductive traits. CONCLUSION: Our research helps to improve the understanding of the genetic architecture of number of piglets born alive, given that the combination of GWAS and CNV analyses allows for a more efficient identification of the genomic regions and biological processes associated with this trait in Duroc pigs. Pig breeding programs could potentially benefit from a more accurate discovery of important genomic regions.


Subject(s)
Genome-Wide Association Study , Animals , Animals, Newborn , Chromosome Mapping , DNA Copy Number Variations , Genotype , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Swine
SELECTION OF CITATIONS
SEARCH DETAIL