Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Image Process ; 22(9): 3664-75, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23782810

ABSTRACT

In the conventional JPEG algorithm, an image is divided into eight by eight blocks and then the 2-D DCT is applied to encode each block. In this paper, we find that, in addition to rectangular blocks, the 2-D DCT is also orthogonal in the trapezoid and triangular blocks. Therefore, instead of eight by eight blocks, we can generalize the JPEG algorithm and divide an image into trapezoid and triangular blocks according to the shapes of objects and achieve higher compression ratio. Compared with the existing shape adaptive compression algorithms, as we do not try to match the shape of each object exactly, the number of bytes used for encoding the edges can be less and the error caused from the high frequency component at the boundary can be avoided. The simulations show that, when the bit rate is fixed, our proposed algorithm can achieve higher PSNR than the JPEG algorithm and other shape adaptive algorithms. Furthermore, in addition to the 2-D DCT, we can also use our proposed method to generate the 2-D complete and orthogonal sine basis, Hartley basis, Walsh basis, and discrete polynomial basis in a trapezoid or a triangular block.

2.
IEEE Trans Image Process ; 22(9): 3614-24, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23744683

ABSTRACT

Salient region detection is useful for several image-processing applications, such as adaptive compression, object recognition, image retrieval, filter design, and image retargeting. A novel method to determine the salient regions of images is proposed in this paper. The L0 smoothing filter and principle component analysis (PCA) play important roles in our framework. The L0 filter is extremely helpful in characterizing fundamental image constituents, i.e., salient edges, and can simultaneously diminish insignificant details, thus producing more accurate boundary information for background merging and boundary scoring. PCA can reduce computational complexity as well as attenuate noise and translation errors. A local-global contrast is then used to calculate the distinction. Finally, image segmentation is used to achieve full-resolution saliency maps. The proposed method is compared with other state-of-the-art saliency detection methods and shown to yield higher precision-recall rates and F-measures.

SELECTION OF CITATIONS
SEARCH DETAIL
...