Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(20): e202400515, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38494466

ABSTRACT

Cyclobutanes with a gem-dimethyl group are common motifs in natural products. However, strategies for constructing enantioenriched gem-dimethyl cyclobutanes are still underdeveloped. Herein, we report an enantioselective approach to synthesize a broad group of chiral 2,3-disubstituted cyclobutanones through sequential 1,4-conjugate addition/trapping/cross-coupling of readily available cyclobutenones. The intermediate 2-bromocyclobutanone provides a valuable synthetic handle for further coupling transformations. In addition, this strategy was successfully utilized to synthesize gem-dimethyl cyclobutane-containing natural products, including (+)-ß-caryophyllene, (-)-raikovenal, (-)-1ß,9αH-5-linoleoyloxy-4,5-secocaryophyllen-4-one, and (-)-rumphellanones A-C.

2.
Opt Express ; 31(20): 32335-32349, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859039

ABSTRACT

We investigate the effect of laser wavelength on laser-induced breakdown spectroscopy (LIBS) on the measurement of carbon in agricultural soils. Two laser wavelengths, 1064 nm and 532 nm, were used to determine soil carbon concentration. No chemical pretreatment, grinding, or pelletization was performed on soil samples to simulate in-field conditions. A multivariate calibration model with outlier filtering and optimized parameters in partial least squared regression (PLSR) was established and validated. The calibration model estimated carbon content in soils with an average prediction error of 4.7% at a laser wavelength of 1064 nm and 2.7% at 532 nm. The limit of detection (LOD) range for 532 nm was 0.34-0.5 w/w%, approximately half of the LOD range for 1064 nm laser wavelength. The improvement in prediction error and LOD of LIBS measurements is attributed to the increase in plasma density achieved at 532 nm.

3.
J Sci Food Agric ; 103(13): 6595-6604, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37245213

ABSTRACT

BACKGROUND: In recent years, there has been an increasing demand for plant-based cheese analogues, however, the protein content of plant-based cheeses currently on the market is generally low and cannot meet the nutritional needs of consumers. RESULTS: Based on the ideal value similarity method (TOPSIS) analysis the best recipe for plant-based cheese was 15% tapioca starch, 20% soy protein isolate, 7% gelatine as a quality enhancer and 15% coconut oil. The protein content of this plant-based cheese was170.1 g kg-1 , which was close to commercial dairy-based cheese and significantly higher than commercial plant-based cheese, The fat content was 114.7 g kg-1 , lower than that of commercial dairy-based cheese. The rheology properties show that the viscoelasticity of the plant-based cheese is higher than that of dairy-based cheese and commercial plant-based. The microstructure results show that the type and content of protein has a significant impact on its microstructure. The Fourier-transform infrared (FTIR) spectrum of the microstructure shows a characteristic value at 1700 cm-1 , because the starch was heated and leached to form a complex with lauric acid under the action of hydrogen bond. It can be inferred that in the interaction between plant-based cheese raw materials, fatty acids serve as a bridge between starch and protein. COUCLUSION: This study described the formula of plant-based cheese and the interaction mechanism between the ingredients, providing a basis for the development of subsequent plant-based cheese related products. © 2023 Society of Chemical Industry.


Subject(s)
Cheese , Cheese/analysis , Proteins , Rheology , Viscosity , Starch
4.
Food Res Int ; 167: 112580, 2023 05.
Article in English | MEDLINE | ID: mdl-37087201

ABSTRACT

This study aimed to investigate changes of milk fat globules (MFG) and their membranes after thermal treatments, and further analyzed the relationship between the stability of MFG and interfacial compositions of milk fat globule membrane (MFGM). We characterized the influence of three kinds of thermal treatments on fat globule interfacial components (including interfacial phospholipids and interfacial protein) and physical properties using phospholipidomics and several microscopy techniques. The results showed that size of MFG increased from 2.96 µm to 3.59 µm and ζ-potential decreased from -9.71 mV to -13.23 mV after thermal treatment, suggesting that MFGM was damaged and MFG occurred coalescence. Thermal treatment increased the Young's modulus of MFGM and made membranes more fragile. The abundance of MFGM proteins decreased while casein and ß-lactoglobulin increased after thermal treatment. Results of phospholipidomics showed that 27 phospholipid species could be used to distinguish the samples. Pasteurization reduced mainly SM and PC located in the outer bilayer of MFGM, while ultra-pasteurization reduced not only SM and PC but also PI and PE located in the inner leaflet. Based on correlation analysis, the increase in Young's modulus of MFGM during thermal treatment might be related to changes in chemical components on the membrane, suggesting a potential link between the change of MFGM components and fat globule coalescence behavior.


Subject(s)
Glycolipids , Glycoproteins , Glycolipids/chemistry , Glycoproteins/chemistry , Lipid Droplets/chemistry , Caseins/analysis , Phospholipids
5.
Food Chem ; 399: 133867, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-35994856

ABSTRACT

This study aimed to investigate changes of fat globules and their membranes, and further analyze evolution of lipid profile of lipid rafts in membranes during heat processing of cow milk. Size of fat globules increased from 3.16 µm to 3.70 µm and ζ-potential decreased from -0.53 mV to -0.38 mV after thermal treatment, suggesting that fat globule membrane was destroyed and fat globule occurred coalescence. Glycerophospholipids and cholesterol in fat globule membrane decreased while sphingomyelin increased after thermal treatment. Results of lipidomics show that total of 38 species of 5 lipids molecule showed ability to differentiate the samples. At high temperatures, highly unsaturated glycerophospholipids and sterol lipids were lost from rafts, meanwhile, sphingomyelin and ceramide increased in this region. Significant change of lipid profile in the raft region during thermal treatment suggested a potential relationship between lipid rafts and fat globule coalescence behavior.


Subject(s)
Glycolipids , Sphingomyelins , Animals , Cattle , Female , Glycerophospholipids , Glycoproteins , Lipid Droplets , Membrane Microdomains
6.
Angew Chem Int Ed Engl ; 59(7): 2750-2754, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31828954

ABSTRACT

A copper-catalyzed tandem process to generate chiral cyclobutene derivatives has been developed. It is based on an enantioselective conjugate addition or reduction of a cyclobutenone and sequential trapping with a chlorophosphate in a one-pot process. These phosphates are stable under mildly acidic conditions and serve as good electrophiles in Negishi coupling reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...