Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Environ Int ; 187: 108721, 2024 May.
Article in English | MEDLINE | ID: mdl-38718675

ABSTRACT

BACKGROUND: The new round of WHO/ILO Joint Estimates of the Work-related Burden of Disease assessment requires futher research to provide more evidence, especially on the health impact of ambient air pollution around the workplace. However, the evidence linking obstructive ventilatory dysfunction (OVD) to fine particulate matter (PM2.5) and its chemical components in workers is very limited. Evidence is even more scarce on the interactive effects between occupational factors and particle exposures. We aimed to fill these gaps based on a large ventilatory function examination of workers in southern China. METHODS: We conducted a cross-sectional study among 363,788 workers in southern China in 2020. The annual average concentration of PM2.5 and its components were evaluated around the workplace through validated spatiotemporal models. We used mixed-effect models to evaluate the risk of OVD related to PM2.5 and its components. Results were further stratified by basic characteristics and occupational factors. FINDINGS: Among the 305,022 workers, 119,936 were observed with OVD. We found for each interquartile range (IQR) increase in PM2.5 concentration, the risk of OVD increased by 27.8 (95 % confidence interval (CI): 26.5-29.2 %). The estimates were 10.9 % (95 %CI: 9.7-12.1 %), 15.8 % (95 %CI: 14.5-17.2 %), 2.6 % (95 %CI: 1.4-3.8 %), 17.1 % (95 %CI: 15.9-18.4 %), and 11 % (95 %CI: 9.9-12.2 %), respectively, for each IQR increment in sulfate, nitrate, ammonium salt, organic matter and black carbon. We observed greater effect estimates among females, younger workers, workers with a length of service of 24-45 months, and professional skill workers. Furthermore, it is particularly noteworthy that the noise-exposed workers, high-temperature-exposed workers, and less-dust-exposed workers were at a 5.7-68.2 % greater risk than others. INTERPRETATION: PM2.5 and its components were significantly associated with an increased risk of OVD, with stronger links among certain vulnerable subgroups.


Subject(s)
Occupational Exposure , Particulate Matter , Humans , Particulate Matter/analysis , China , Cross-Sectional Studies , Adult , Male , Occupational Exposure/analysis , Middle Aged , Female , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Respiratory Function Tests
2.
Environ Pollut ; 349: 123856, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38556152

ABSTRACT

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) are well-acknowledged pro-inflammatory chemicals, but their associations with blood cell-based inflammatory biomarkers need further investigation. Moreover, the effects and mechanisms of essential metals on PAH-related inflammation remain poorly understood. OBJECTS: To elucidate the associations of PAHs on inflammatory biomarkers, as well as the effects and mechanisms of essential metals on these associations. METHODS: A cross-sectional study was conducted on 1388 coke oven workers. We analyzed the modification effects of key essential metal(s) on PAHs-inflammatory biomarkers associations. To explore the possible mechanisms from an inflammation perspective, we performed a bioinformatic analysis on the genes of PAHs and essential metals obtained from the Comparative Toxicogenomics Database (CTD) and performed a mediation analysis. RESULTS: We observed associations of PAHs and essential metals with lymphocyte-to-monocyte ratio (LMR) (P < 0.05). PAH mixtures were inversely associated with LMR (ßQGC-index = -0.18, P < 0.001), with 1-hydroxypyrene (1-OH-Pyr) being the most prominent contributor (weight = 63.37%), whereas a positive association between essential metal mixtures and LMR was observed (ßQGC-index = 0.14, P < 0.001), with tin being the most significant contributor (weight = 51.61%). An inverse association of 1-OH-Pyr with LMR was weakened by increased tin exposure (P < 0.05). The CTD database showed that PAHs and tin compounds co-regulated 22 inflammation-associated genes, but they regulated most genes in opposite directions. Further identified the involvement of oxidative stress and mediation analysis showed that the mediation effect of 8-hydroxydeoxyguanosine (8-OHdG) on 1-OH-Pyr-LMR association presented heterogeneity between low and high tin tertile groups (I2 = 37.84%). CONCLUSION: 1-OH-Pyr and tin were significantly associated with LMR. Modification effects indicated that the inverse association of 1-OH-Pyr with LMR was mitigated with an increase in tin. The mediation effect of 8-OHdG on the inverse association of 1-OH-Pyr with LMR may be partially dependent on tin.


Subject(s)
Biomarkers , Inflammation , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/toxicity , Humans , Biomarkers/blood , Cross-Sectional Studies , Adult , Male , Metals , Coke , Middle Aged
3.
BMC Public Health ; 24(1): 541, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383328

ABSTRACT

INTRODUCTION: An increasing number of original studies suggested that occupational noise exposure might be associated with the risk of hypertension, but the results remain inconsistent and inconclusive. In addition, the attributable fraction (AF) of occupational noise exposure has not been well quantified. We aimed to conduct a large-scale occupational population-based study to comprehensively investigate the relationship between occupational noise exposure and blood pressure and different hypertension subtypes and to estimate the AF for hypertension burden attributable to occupational noise exposure. METHODS: A total of 715,135 workers aged 18-60 years were included in this study based on the Key Occupational Diseases Surveillance Project of Guangdong in 2020. Multiple linear regression was performed to explore the relationships of occupational noise exposure status, the combination of occupational noise exposure and binaural high frequency threshold on average (BHFTA) with systolic and diastolic blood pressure (SBP, DBP). Multivariable logistic regression was used to examine the relationshipassociation between occupational noise exposure status, occupational noise exposure combined with BHFTA and hypertension. Furthermore, the attributable risk (AR) was calculated to estimate the hypertension burden attributed to occupational exposure to noise. RESULTS: The prevalence of hypertension among occupational noise-exposed participants was 13·7%. SBP and DBP were both significantly associated with the occupational noise exposure status and classification of occupational noise exposure combined with BHFTA in the crude and adjusted models (all P < 0·0001). Compared with workers without occupational noise exposure, the risk of hypertension was 50% greater among those exposed to occupational noise in the adjusted model (95% CI 1·42-1·58). For participants of occupational noise exposed with BHFTA normal, and occupational noise exposed with BHFTA elevated, the corresponding risks of hypertension were 48% (1·41-1·56) and 56% (1·46-1·63) greater than those of occupational noise non-exposed with BHFTA normal, respectively. A similar association was found in isolated systolic hypertension (ISH) and prehypertension. Subgroup analysis by sex and age showed that the positive associations between occupational noise exposure and hypertension remained statistically significant across all subgroups (all P < 0.001). Significant interactions between occupational noise status, classification of occupational noise exposure combined with BHFTA, and age in relation to hypertension risk were identified (all P for interaction < 0.001). The associations of occupational noise status, classification of occupational noise exposure combined with BHFTA and hypertension were most pronounced in the 18-29 age groups. The AR% of occupational noise exposure for hypertension was 28·05% in the final adjusted model. CONCLUSIONS: Occupational noise exposure was positively associated with blood pressure levels and the prevalence of hypertension, ISH, and prehypertension in a large occupational population-based study. A significantly increased risk of hypertension was found even in individuals with normal BHFTA exposed to occupational noise, with a further elevated risk observed in those with elevated BHFTA. Our findings provide epidemiological evidence for key groups associated with occupational noise exposure and hypertension, and more than one-fourth of hypertension cases would have been prevented by avoiding occupational noise exposure.


Subject(s)
Hearing Loss, Noise-Induced , Hypertension , Noise, Occupational , Occupational Diseases , Occupational Exposure , Prehypertension , Humans , Noise, Occupational/adverse effects , Cross-Sectional Studies , Hypertension/epidemiology , Hypertension/etiology , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Occupational Diseases/epidemiology , Hearing Loss, Noise-Induced/etiology , China/epidemiology
4.
Environ Pollut ; 346: 123628, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38395129

ABSTRACT

Epidemiological evidence concerning effects of simultaneous exposure to noise and benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS) on renal function remains uncertain. In 2020, a cross-sectional study was conducted among 1160 petrochemical workers in southern China to investigate effects of their co-exposure on estimated glomerular filtration rate (eGFR) and mild renal impairment (MRI). Noise levels were assessed using cumulative noise exposure (CNE). Urinary biomarkers for BTEXS were quantified. We found the majority of workers had exposure levels to noise and BTEXS below China's occupational exposure limits. CNE, trans, trans-muconic acid (tt-MA), and the sum of mandelic acid and phenylglyoxylic acid (PGMA) were linearly associated with decreased eGFR and increased MRI risk. We observed U-shaped associations for both N-acetyl-S-phenyl-L-cysteine (SPMA) and o-methylhippuric acid (2-MHA) with MRI. In further assessing the joint effect of BTEXS (ß, -0.164 [95% CI, -0.296 to -0.033]) per quartile increase in all BTEXS metabolites on eGFR using quantile g-computation models, we found SPMA, tt-MA, 2-MHA, and PGMA played pivotal roles. Additionally, the risk of MRI associated with tt-MA was more pronounced in workers with lower CNE levels (P = 0.004). Multiplicative interaction analysis revealed antagonisms of CNE and PGMA on MRI risk (P = 0.034). Thus, our findings reveal negative dose-effect associations between noise and BTEXS mixture exposure and renal function in petrochemical workers. With the exception of toluene, benzene, xylene, ethylbenzene, and styrene are all concerning pollutants for renal dysfunction. Effects of benzene, ethylbenzene, and styrene exposure on renal dysfunction were more pronounced in workers with lower CNE.


Subject(s)
Glyoxylates , Kidney Diseases , Mandelic Acids , Occupational Exposure , Humans , Benzene/analysis , Xylenes/analysis , Toluene/analysis , Styrene/analysis , Cross-Sectional Studies , Benzene Derivatives/analysis , Occupational Exposure/analysis
5.
Ecotoxicol Environ Saf ; 268: 115694, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37984289

ABSTRACT

Lead (Pb) is a pervasive toxic metal contaminant associated with a high risk of myocardial injury. However, the precise mechanism underlying Pb-induced myocardial injury has yet to be fully elucidated. In this study, a murine model of Pb exposure (0, 1, 5, and 10 mg/kg) was employed to investigate the involvement of neutrophil degranulation in the induction of myocardial injury. Notably, serum levels of cardiac troponin I (cTnI) and creatine kinase-MB (CK-MB) increased significantly in Pb-exposed mice, whereas cTnI levels in cardiomyocytes decreased, suggesting that Pb exposure may cause early myocardial injury. Moreover, Pb exposure was found to promote neutrophil degranulation, as evidenced by elevated myeloperoxidase (MPO) and neutrophil elastase (NE) concentrations in both the serum of Pb-exposed workers and Pb-exposed mice, as well as the extracellular supernatant of neutrophils following exposure. However, we found that serum level of cTnI enhanced by Pb exposure is associated with increased NE levels in the serum, but not with MPO levels. Upon treatment with NE inhibitor (sivelestat), the serum level of cTnI markedly reduced in Pb-exposed mice, we found that early myocardial injury is associated with NE levels in the serum. At the molecular level, western blotting analysis revealed an upregulation of ERK1/2 expression in vitro following Pb exposure, suggesting that the activation of the ERK1/2 signaling pathway may underlie the participation of neutrophil degranulation in Pb-induced myocardial injury. In summary, our findings demonstrate that Pb exposure can initiate early myocardial injury by promoting the neutrophil degranulation process, thereby highlighting the potential role of this process in the pathogenesis of Pb-associated myocardial injury.


Subject(s)
Lead , Neutrophils , Mice , Animals , Neutrophils/metabolism , Lead/toxicity , Myocytes, Cardiac/metabolism , Leukocyte Elastase/metabolism
6.
Int J Biol Sci ; 19(13): 4004-4019, 2023.
Article in English | MEDLINE | ID: mdl-37705751

ABSTRACT

Silicosis is a common and ultimately fatal occupational disease, yet the limited therapeutic option remains the major clinical challenge. Apelin, an endogenous ligand of the G-protein-coupled receptor (APJ), is abundantly expressed in diverse organs. The apelin-APJ axis helps to control pathological and physiological processes in lung. The role of apelin in the pathological process and its possible therapeutic effects on silicosis have not been elucidated. In this study, we found that lung expression and circulating levels of apelin were markedly decreased in silicosis patients and silica-induced fibrotic mice and associated with the severity. Furthermore, in vivo data demonstrated that pre-treatment from day 3 and post-treatment from day 15 with apelin could both alleviate silica-induced pulmonary fibrosis in mice. Besides, apelin inhibited pulmonary fibroblast activation via transforming growth factor beta 1 (TGF-ß1) signaling. Our study suggested that apelin could prevent and reverse silica-induced pulmonary fibrosis by inhibiting the fibroblast activation through TGF-ß1 signaling pathway, thus providing a new potential therapeutic strategy for silicosis and other pulmonary fibrosis.


Subject(s)
Pulmonary Fibrosis , Silicosis , Animals , Mice , Apelin , Fibroblasts , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Silicon Dioxide/toxicity , Silicosis/drug therapy , Transforming Growth Factor beta1
7.
Int J Biol Macromol ; 253(Pt 3): 126651, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37709227

ABSTRACT

Silicosis is a severe occupational lung disease caused by inhalation of silica particles. Unfortunately, there are currently limited treatment options available for silicosis. Recent advances have indicated that bone marrow mesenchymal stem cells (BMSCs) have a therapeutic effect on silicosis, but their efficacy and underlying mechanisms remain largely unknown. In this study, we focused on the early phase of silica-induced lung injury to investigate the therapeutic effect of BMSCs. Our findings demonstrated that BMSCs attenuated silica-induced acute pulmonary inflammation by inhibiting NLRP3 inflammasome pathways in lung macrophages. To further understand the mechanisms involved, we utilized RNA sequencing to analyze the transcriptomes of BMSCs co-cultured with silica-stimulated bone marrow-derived macrophages (BMDMs). The results clued tumor necrosis factor-stimulated gene 6 (TSG-6) might be a potentially key paracrine secretion factor released from BMSCs, which exerts a protective effect. Furthermore, the anti-inflammatory and inflammasome pathway inhibition effects of BMSCs were attenuated when TSG-6 expression was silenced, both in vivo and in vitro. Additionally, treatment with exogenous recombinant mouse TSG-6 (rmTSG-6) demonstrated similar effects to BMSCs in attenuating silica-induced inflammation. Overall, our findings suggested that BMSCs can regulate the activation of inflammasome in macrophages by secreting TSG-6, thereby protecting against silica-induced acute pulmonary inflammation both in vivo and in vitro.


Subject(s)
Mesenchymal Stem Cells , Pneumonia , Silicosis , Mice , Animals , Lung , Silicon Dioxide/toxicity , Silicon Dioxide/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Silicosis/therapy , Silicosis/metabolism , Silicosis/pathology , Pneumonia/metabolism , Pneumonia/pathology , Macrophages , Inflammation/pathology , Anti-Inflammatory Agents/pharmacology
8.
Chemosphere ; 341: 140138, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37696478

ABSTRACT

Lead (Pb) exposure is well recognized as a significant environmental factor associated with the high incidence of cardiovascular diseases. However, the carriers and molecular targets of Pb in human blood remain to be understood, especially for a real Pb exposure scenario. In this study, a total of 350 blood samples were collected from the smelting workers and systematically analyzed using metallomics and metalloproteomics approaches. The results showed that the majority of Pb (∼99.4%) could be presented in the blood cells. Pb in the cytoplasm of blood cells accounted for approximately 83.1% of the total blood Pb, with nearly half of Pb being bound to proteins. Pb-binding proteins in the blood of workers were identified as hemoglobin, catalase, haptoglobin, δ-aminolevulinic acid dehydratase, and peroxiredoxin-2. Multiple linear regression analysis demonstrated that higher levels of Pb bound to proteins (Mix-bound Pb and Protein-bound Pb) were positively associated with higher systolic blood pressure (p < 0.05). However, the association between blood lead level, Pb levels in the blood cells and systolic blood pressure was not observed (p > 0.05). This study suggested that Pb bound to proteins could be a suitable biomarker for indicating the potential risk of occupational hypertension.


Subject(s)
Cardiovascular Diseases , Hypertension , Humans , Carrier Proteins , Blood Pressure , Lead/toxicity
9.
Int J Mol Sci ; 24(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298082

ABSTRACT

Soil saline-alkalization inhibits plant growth and development and seriously affects crop yields. Over their long-term evolution, plants have formed complex stress response systems to maintain species continuity. R2R3-MYB transcription factors are one of the largest transcription factor families in plants, widely involved in plant growth and development, metabolism, and stress response. Quinoa (Chenopodium quinoa Willd.), as a crop with high nutritional value, is tolerant to various biotic and abiotic stress. In this study, we identified 65 R2R3-MYB genes in quinoa, which are divided into 26 subfamilies. In addition, we analyzed the evolutionary relationships, protein physicochemical properties, conserved domains and motifs, gene structure, and cis-regulatory elements of CqR2R3-MYB family members. To investigate the roles of CqR2R3-MYB transcription factors in abiotic stress response, we performed transcriptome analysis to figure out the expression file of CqR2R3-MYB genes under saline-alkali stress. The results indicate that the expression of the six CqMYB2R genes was altered significantly in quinoa leaves that had undergone saline-alkali stress. Subcellular localization and transcriptional activation activity analysis revealed that CqMYB2R09, CqMYB2R16, CqMYB2R25, and CqMYB2R62, whose Arabidopsis homologues are involved in salt stress response, are localized in the nucleus and exhibit transcriptional activation activity. Our study provides basic information and effective clues for further functional investigation of CqR2R3-MYB transcription factors in quinoa.


Subject(s)
Arabidopsis , Chenopodium quinoa , Chenopodium quinoa/genetics , Chenopodium quinoa/metabolism , Amino Acid Sequence , Plant Proteins/metabolism , Genes, myb , Arabidopsis/genetics , Transcription Factors/metabolism , Phylogeny , Gene Expression Regulation, Plant
10.
Front Plant Sci ; 14: 1198353, 2023.
Article in English | MEDLINE | ID: mdl-37342145

ABSTRACT

SYP71, a plant-specific Qc-SNARE with multiple subcellular localization, is essential for symbiotic nitrogen fixation in nodules in Lotus, and is implicated in plant resistance to pathogenesis in rice, wheat and soybean. Arabidopsis SYP71 is proposed to participate in multiple membrane fusion steps during secretion. To date, the molecular mechanism underlying SYP71 regulation on plant development remains elusive. In this study, we clarified that AtSYP71 is essential for plant development and stress response, using techniques of cell biology, molecular biology, biochemistry, genetics, and transcriptomics. AtSYP71-knockout mutant atsyp71-1 was lethal at early development stage due to the failure of root elongation and albinism of the leaves. AtSYP71-knockdown mutants, atsyp71-2 and atsyp71-3, had short roots, delayed early development, and altered stress response. The cell wall structure and components changed significantly in atsyp71-2 due to disrupted cell wall biosynthesis and dynamics. Reactive oxygen species homeostasis and pH homeostasis were also collapsed in atsyp71-2. All these defects were likely resulted from blocked secretion pathway in the mutants. Strikingly, change of pH value significantly affected ROS homeostasis in atsyp71-2, suggesting interconnection between ROS and pH homeostasis. Furthermore, we identified AtSYP71 partners and propose that AtSYP71 forms distinct SNARE complexes to mediate multiple membrane fusion steps in secretory pathway. Our findings suggest that AtSYP71 plays an essential role in plant development and stress response via regulating pH homeostasis through secretory pathway.

11.
Environ Pollut ; 327: 121547, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37028791

ABSTRACT

Toxic metals can substantially change the bacterial community and functions thereof in aquatic environments. Herein, metal resistance genes (MRGs) are the core genetic foundation for microbial responses to the threats of toxic metals. In this study, waterborne bacteria collected from the Pearl River Estuary (PRE) were separated into the free-living bacteria (FLB) and particle-attached bacteria (PAB), and analyzed using metagenomic approaches. MRGs were ubiquitous in the PRE water and mainly related to Cu, Cr, Zn, Cd and Hg. The levels of PAB MRGs in the PRE water ranged from 8.11 × 109 to 9.93 × 1012 copies/kg, which were significantly higher than those of the FLB (p < 0.01). It could be attributed to a large bacterial population attached on the suspended particulate matters (SPMs), which was evidenced by a significant correlation between the PAB MRGs and 16S rRNA gene levels in the PRE water (p < 0.05). Moreover, the total levels of PAB MRGs were also significantly correlated with those of FLB MRGs in the PRE water. The spatial pattern of MRGs of both FLB and PAB exhibited a declining trend from the low reaches of the PR to the PRE and on to the coastal areas, which was closely related to metal pollution degree. MRGs likely carried by plasmids were also enriched on the SPMs with a range from to 3.85 × 108 to 3.08 × 1012 copies/kg. MRG profiles and taxonomic composition of the predicted MRG hosts were significantly different between the FLB and PAB in the PRE water. Our results suggested that FLB and PAB could behave differential response to heavy metals in the aquatic environments from the perspective of MRGs.


Subject(s)
Metals, Heavy , Rivers , Rivers/microbiology , Estuaries , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Metals, Heavy/toxicity , Metals, Heavy/analysis , Genes, Bacterial , Water
12.
Int J Mol Sci ; 24(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37108114

ABSTRACT

Saline-alkali stress seriously affects the yield and quality of crops, threatening food security and ecological security. Improving saline-alkali land and increasing effective cultivated land are conducive to sustainable agricultural development. Trehalose, a nonreducing disaccharide, is closely related to plant growth and development and stress response. Trehalose 6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) are key enzymes catalyzing trehalose biosynthesis. To elucidate the effects of long-term saline-alkali stress on trehalose synthesis and metabolism, we conducted an integrated transcriptome and metabolome analysis. As a result, 13 TPS and 11 TPP genes were identified in quinoa (Chenopodium quinoa Willd.) and were named CqTPS1-13 and CqTPP1-11 according to the order of their Gene IDs. Through phylogenetic analysis, the CqTPS family is divided into two classes, and the CqTPP family is divided into three classes. Analyses of physicochemical properties, gene structures, conservative domains and motifs in the proteins, and cis-regulatory elements, as well as evolutionary relationships, indicate that the TPS and TPP family characteristics are highly conserved in quinoa. Transcriptome and metabolome analyses of the sucrose and starch metabolism pathway in leaves undergoing saline-alkali stress indicate that CqTPP and Class II CqTPS genes are involved in the stress response. Moreover, the accumulation of some metabolites and the expression of many regulatory genes in the trehalose biosynthesis pathway changed significantly, suggesting the metabolic process is important for the saline-alkali stress response in quinoa.


Subject(s)
Chenopodium quinoa , Chenopodium quinoa/genetics , Chenopodium quinoa/metabolism , Trehalose/genetics , Trehalose/metabolism , Phylogeny , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Gene Expression Regulation, Plant
13.
Environ Pollut ; 318: 120891, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36529338

ABSTRACT

Ubiquitous polycyclic aromatic hydrocarbons (PAHs) and metals could induce hyperuricemia and oxidative damage individually, while their co-exposure effects on hyperuricemia risk and the potential roles of oxidative damage in these health outcomes remain poorly understood. We conducted a cross-sectional study in 1379 coke oven workers. We evaluated the levels of PAH-metal exposure and oxidative damage by urinary monohydroxy-PAHs, plasma benzo [a]pyrene-7,8-diol-9,10-epoxide-albumin (BPDE-Alb) adducts, urinary metals, urinary 8-iso-prostaglandin-F2α, and urinary 8-hydroxydeoxyguanosine (8-OH-dG). The subjects were classified into cases of hyperuricemia and controls by the levels of blood uric acid. We found that the sum of multiple hydroxyphenanthrene (ΣOH-Phe) was robustly associated with the increase in hyperuricemia risk, while rubidium and strontium had robust protective associations with hyperuricemia risk (Ptrend<0.05). The risk association of ΣOH-Phe was weaker in workers with high levels of rubidium and strontium [P for modifying effect (PME) < 0.030]. The protective association of strontium was more pronounced in workers with higher ΣOH-Phe (PME = 0.014). We also found that 8-OH-dG was a risk factor for hyperuricemia (Ptrend = 0.006) and mediated 10.13% of the elevated hyperuricemia risk associated with ΣOH-Phe. Our findings suggested that individual PAHs and metals, as well as their co-exposure, may influence hyperuricemia risk among coke oven workers, with oxidative DNA damage playing a potential mediating role in their associations.


Subject(s)
Coke , Hyperuricemia , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Humans , Polycyclic Aromatic Hydrocarbons/toxicity , 8-Hydroxy-2'-Deoxyguanosine , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Rubidium , Cross-Sectional Studies , East Asian People , Hyperuricemia/chemically induced , Hyperuricemia/epidemiology , Metals , Strontium , Oxidative Stress , DNA Damage
14.
Environ Mol Mutagen ; 63(8-9): 423-428, 2022 12.
Article in English | MEDLINE | ID: mdl-36346153

ABSTRACT

Occupational exposure to trichloroethylene (TCE) has been associated with alterations in B-cell activation factors and an increased risk of non-Hodgkin's lymphoma (NHL). Here, we aimed to examine the biological processes influenced by TCE exposure to understand the underlying molecular mechanisms. This cross-sectional molecular epidemiology study included data of 1317 targeted proteins in the serum from 42 TCE exposed and 34 unexposed factory workers in Guangdong, China. We used multivariable linear regressions to identify proteins associated with TCE exposure and examined their exposure-response relationship across categories of TCE exposure (unexposed, low exposed: <10 ppm, high exposed: ≥10 ppm). We further examined pathway enrichment of TCE-related proteins to understand their biological response. Occupational exposure to TCE was associated with lower levels of tumor necrosis factor receptor superfamily member 17 (TNFRSF17; ß = -.08; p-value = .0003) and kynureninase (KYNU; ß = -.10, p-value = .002). These proteins also showed a significant exposure-response relation across the unexposed, low exposed, and high exposed workers (all p-trends < .001, false discovery rate [FDR] < 0.20). Pathway analysis of TCE-related proteins showed significant enrichment (FDR < 0.05) for several inflammatory and immune pathways. TCE exposure was associated with TNFRSF17, a key B-cell maturation antigen that mediates B-cell survival and KYNU, an enzyme that plays a role in T-cell mediated immune response. Given that altered immunity is an established risk factor for NHL, our findings support the biological plausibility of linking TCE exposure with NHL.


Subject(s)
Lymphoma, Non-Hodgkin , Occupational Exposure , Trichloroethylene , Humans , Trichloroethylene/toxicity , Trichloroethylene/analysis , Cross-Sectional Studies , Proteomics , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Blood Proteins , Lymphoma, Non-Hodgkin/chemically induced , Lymphoma, Non-Hodgkin/epidemiology
15.
Toxics ; 10(9)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36136467

ABSTRACT

Benzene, toluene, and xylenes (BTX) commonly co-exist. Exposure to individual components and BTX-rich mixtures can induce hematological effects. However, the hematological effects of long-term exposure to BTX are still unclear, and respective reference levels based on empirical evidence should be developed. We conducted a follow-up study in BTX-exposed petrochemical workers. Long-term exposure levels were quantified by measuring cumulative exposure (CE). Generalized weighted quantile sum (WQS) regression models and Benchmark Dose (BMD) Software were used to evaluate their combined effects and calculate their BMDs, respectively. Many hematologic parameters were significantly decreased at the four-year follow-up (p < 0.05). We found positive associations of CE levels of benzene, toluene, and xylene with the decline in monocyte counts, lymphocyte counts, and hematocrit, respectively (ß > 0.010, Ptrend < 0.05). These associations were stronger in subjects with higher baseline parameters, males, drinkers, or overweight subjects (Pinteraction < 0.05). BTX had positive combined effects on the decline in monocyte counts, red-blood-cell counts, and hemoglobin concentrations (Ptrend for WQS indices < 0.05). The estimated BMDs for CE levels of benzene, toluene, and xylene were 2.138, 1.449, and 2.937 mg/m3 × year, respectively. Our study demonstrated the hematological effects of long-term BTX co-exposure and developed 8h-RELs of about 0.01 ppm based on their hematological effects.

16.
Occup Environ Med ; 79(10): 717-720, 2022 10.
Article in English | MEDLINE | ID: mdl-35504721

ABSTRACT

OBJECTIVES: There has been concern over the possible risk of autoimmune diseases from exposure to trichloroethylene (TCE), an industrial solvent and common pollutant near hazardous waste sites. Studies of TCE-exposed lupus-prone mouse strains have reported increases in serum antinuclear antibodies (ANAs), a marker of autoimmunity, and autoimmune pathologic changes, while epidemiologic studies have provided limited support for an association between TCE exposure and scleroderma. To investigate exposure-related biologic evidence of autoimmunity in humans, we measured ANA levels in sera from a cross-sectional study of TCE-exposed (n=80) and TCE-unexposed (n=96) workers in Guangdong, China. METHODS: Full-shift personal air exposure measurements for TCE were taken prior to blood collection. Serum ANAs were detected by immunofluorescence on HEp-2 cells. We calculated ORs and 95% CI relating levels of TCE exposure (categorised using tertiles as cut-points) and ANA positivity (1+ intensity at 1:320 dilution) using multivariable logistic regression. RESULTS: Samples from 16 of 176 participants were ANA-positive. We found higher levels of TCE exposure (concentrations>17.27 ppm) to be associated with an elevated odds of ANA positivity (OR 4.7, 95% CI 1.3 to 16.8) compared with unexposed controls. This association remained after excluding two subjects with diagnosed autoimmune disease (OR 4.5, 95% CI 1.2 to 16.2). We did not observe an association with ANAs at lower exposure levels. CONCLUSIONS: Our findings, to our knowledge the first direct human evidence of an association between TCE exposure and systemic autoimmunity, provide biologic plausibility to epidemiologic evidence relating TCE and autoimmune disease.


Subject(s)
Autoimmune Diseases , Biological Products , Occupational Exposure , Trichloroethylene , Animals , Antibodies, Antinuclear , Autoimmune Diseases/chemically induced , Autoimmune Diseases/epidemiology , Cross-Sectional Studies , Humans , Mice , Occupational Exposure/adverse effects , Trichloroethylene/adverse effects
17.
Environ Int ; 158: 106871, 2022 01.
Article in English | MEDLINE | ID: mdl-34560324

ABSTRACT

Epigenetic aging biomarkers are associated with increased morbidity and mortality. We evaluated if occupational exposure to three established chemical carcinogens is associated with acceleration of epigenetic aging. We studied workers in China occupationally exposed to benzene, trichloroethylene (TCE) or formaldehyde by measuring personal air exposures prior to blood collection. Unexposed controls matched by age and sex were selected from nearby factories. We measured leukocyte DNA methylation (DNAm) in peripheral white blood cells using the Infinium HumanMethylation450 BeadChip to calculate five epigenetic aging clocks and DNAmTL, a biomarker associated with leukocyte telomere length and cell replication. We tested associations between exposure intensity and epigenetic age acceleration (EAA), defined as the residuals of regressing the DNAm aging biomarker on chronological age, matching factors and potential confounders. Median differences in EAA between exposure groups were tested using a permutation test with exact p-values. Epigenetic clocks were strongly correlated with age (Spearman r > 0.8) in all three occupational studies. There was a positive exposure-response relationship between benzene and the Skin-Blood Clock EAA biomarker: median EAA was -0.91 years in controls (n = 44), 0.78 years in workers exposed to <10 ppm (n = 41; mean benzene = 1.35 ppm; p = 0.034 vs. controls), and 2.10 years in workers exposed to ≥10 ppm (n = 9; mean benzene = 27.3 ppm; p = 0.019 vs. controls; ptrend = 0.0021). In the TCE study, control workers had a median Skin-Blood Clock EAA of -0.54 years (n = 71) compared to 1.63 years among workers exposed to <10 ppm of TCE (n = 27; mean TCE = 4.22 ppm; p = 0.035). We observed no evidence of EAA associations with formaldehyde exposure (39 controls, 31 exposed). Occupational benzene and TCE exposure were associated with increased epigenetic age acceleration measured by the Skin-Blood Clock. For TCE, there was some evidence of epigenetic age acceleration for lower exposures compared to controls. Our results suggest that some chemical carcinogens may accelerate epigenetic aging.


Subject(s)
Occupational Exposure , Trichloroethylene , Aging , Benzene/toxicity , Biomarkers , Epigenesis, Genetic , Formaldehyde/toxicity , Humans , Occupational Exposure/analysis , Trichloroethylene/toxicity
18.
Chemosphere ; 286(Pt 1): 131668, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34346346

ABSTRACT

Bacterial degradation is unequivocally considered as an important way for the cleanup of polycyclic aromatic hydrocarbon (PAHs) in the aquatic environment. However, the diversity and distribution of PAH-degrading bacterial communities and PAH degradation-related genes (PAHDGs) in ambient environment need to be investigated. In this study, bacteria in the water of the Pearl River Estuary (PRE) were initially separated as the particle-attached bacteria (PAB) and free-living bacteria (FLB), and were further characterized using metagenomic approaches. Proteobacteria (80.1 %) was identified as the most abundant PAH-degrading phylum in the PRE water, followed by Bacteroidetes, Actinobacteria, and Firmicutes. A substantial difference in the community structure was observed between PAH-degrading PAB and FLB. Both of PAH-degrading bacteria and PAHDGs were enriched on the suspended particulate matters (SPMs), with the range of enrichment factor (EF) from 7.84 × 104 to 6.64 × 106 (PAH-degrading bacteria) and from 1.14 × 103 to 1.76 × 105 (PAHDGs). The levels of PAH-degrading bacteria 16 S rRNA genes and PAHDGs on the SPMs were both significantly correlated with those in the aqueous phase (AP) in the PRE water (p < 0.05), indicating a dynamic distribution of PAH-degrading bacteria between these two phases. The total PAH concentrations on the SPMs of the PRE water were also significantly correlated with the total PAHDG levels in the PAB (p < 0.05). Our results suggested that the SPMs could be the important compartment for the elimination of PAHs from the aquatic environment.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Bacteria/genetics , Biodegradation, Environmental , Estuaries , Geologic Sediments , Particulate Matter , Polycyclic Aromatic Hydrocarbons/analysis , Rivers
20.
Environ Sci Technol ; 55(6): 3819-3826, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33660988

ABSTRACT

Understanding the presence and dynamics of chemical pollutants in individual cells is fundamentally important for their trafficking, fate, and toxicity in humans. The presence of molecular components (i.e., proteins and mRNA) in individual cells of higher organisms is considered a stochastic event. The characteristics of chemical pollutants, as extrinsic compounds, in subpopulation of human cells on single-cell basis have not been explored yet. Here, we demonstrated the lead (Pb) content in individual mature erythrocytes (m-erythrocytes) of Pb-intoxicated patients, and healthy subjects exhibited a unified pattern in probability distribution (gamma distribution) and dynamics, despite being highly heterogeneous. The Pb content in individual m-erythrocytes decreased with the lifetime of m-erythrocytes. Meanwhile, the distribution and dynamics were found to be highly related to the Pb content in m-erythrocytes and was independent of patients and their status. This is the first study to analyze the distribution pattern of chemical pollutants at a single-cell level in higher organisms. This study sheds light on the molecular mechanism of Pb trafficking and fate in humans and the search for an efficient strategy to improve Pb excretion during Pb treatment.


Subject(s)
Environmental Pollutants , Single-Cell Analysis , Erythrocytes , Humans , Probability
SELECTION OF CITATIONS
SEARCH DETAIL
...