Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Clin Pract ; 2024: 3711123, 2024.
Article in English | MEDLINE | ID: mdl-38454935

ABSTRACT

Background: Endobronchial ultrasound (EBUS) sonographic features help identify benign/malignant lymph nodes while conducting transbronchial needle aspiration (TBNA). This study aims to identify risk factors for malignancy based on EBUS sonographic features and to estimate the risk of malignancy in lymph nodes by constructing a nomogram. Methods: 1082 lymph nodes from 625 patients were randomly enrolled in training (n = 760) and validation (n = 322) sets. The subgroup of EBUS-TBNA postoperative negative lymph nodes (n = 317) was randomly enrolled in a training (n = 224) set and a validation (n = 93) set. Logistic regression analysis was used to identify the EBUS features of malignant lymph nodes. A nomogram was formulated using the EBUS features in the training set and later validated in the validation set. Results: Multivariate analysis revealed that long-axis, short-axis, echogenicity, fusion, and central hilar structure (CHS) were the independent predictors of malignant lymph nodes. Based on these risk factors, a nomogram was constructed. Both the training and validation sets of 5 EBUS features nomogram showed good discrimination, with area under the curve values of 0.880 (sensitivity = 0.829 and specificity = 0.807) and 0.905 (sensitivity = 0.819 and specificity = 0.857). Subgroup multivariate analysis revealed that long-axis, echogenicity, and CHS were the independent predictors of malignancy outcomes of EBUS-TBNA postoperative negative lymph nodes. Based on these risk factors, a nomogram was constructed. Both the training and validation sets of 3 EBUS features nomogram showed good discrimination, with the area under the curve values of 0.890 (sensitivity = 0.882 and specificity = 0.786) and 0.834 (sensitivity = 0.930 and specificity = 0.636). Conclusions: Our novel scoring system based on two nomograms can be utilized to predict malignant lymph nodes.


Subject(s)
Lung Neoplasms , Nomograms , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Mediastinum/diagnostic imaging , Mediastinum/pathology , Ultrasonography , Random Allocation
2.
Appl Opt ; 62(15): 3855-3860, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37706694

ABSTRACT

Chiral structures have been widely used in many fields, such as biosensing and analytical chemistry. In this paper, the chiral response of a composite structure consisting of α-M o O 3 film and a silver (Ag) metasurface is studied. First, the effect of the thickness of α-M o O 3 film on the circular dichroism (CD) is discussed, and it is found that CD can reach 0.93 at a wavelength of 9.6 µm when the thickness of α-M o O 3 film is 6.075 µm. To better understand the physical mechanism, we analyze the transverse electric and transverse magnetic wave components in the transmitted wave for the whole structure and each layer. One can see that the strong chirality of the structure is attributed to the polarization conversion of α-M o O 3 film and the selective transmissivity of Ag ribbons. In addition, the influence of the filling factor of the Ag ribbons on chirality is also studied. This work combines hyperbolic material α-M o O 3 with Ag ribbons to enhance CD. Also, it provides greater freedom in the tuning of chirality. We believe that this work not only deepens the understanding of the chiral response of anisotropic materials, but also gives promise for its applications in the fields of polarization optics and biosensing.

3.
Cancer Manag Res ; 12: 1523-1534, 2020.
Article in English | MEDLINE | ID: mdl-32184657

ABSTRACT

BACKGROUND: Gastric cancer (GC) is among the most common forms of cancer affecting the digestive system. This study sought to identify hub genes regulating early GC (EGC) in order to explore their potential for early diagnosis and prognosis of patients. METHODS: We utilized a publically available dataset from the Gene Expression Omnibus database (GSE55696). Differences between EGC and LGIN with respect to gene expression were compared using the limma software. Identified differentially expressed genes (DEGs) were subjected to gene ontology (GO) and pathway enrichment analyses with the DAVID application, and the STRING website and Cytoscape software were used to construct a protein-protein interaction (PPI) network incorporating these DEGs. This network was in turn used to identify hub genes among selected DEGs, which were analyzed with the Kaplan-Meier Plotter database. In addition, Western blotting, qRT-PCR, immunohistochemistry, and UALCAN were all employed to validate the relationship between the expression of these genes and GC patient prognosis. RESULTS: A total of 482 DEGs were identified, with GO analyses indicating an increase in the expression of genes linked with the development of cancer. Pathway analyses also indicated that these genes play a role in certain cancer-related pathways. The PPI network highlighted four potential hub genes, of which only ICAM1 was linked to a poor GC patient prognosis. This link between ICAM1 and GC patient outcomes was confirmed via UALCAN, Western blotting, immunohistochemistry, and qRT-PCR. CONCLUSION: ICAM1 may therefore modulate tumor progression in GC, thus potentially representing a valuable prognostic and diagnostic biomarker of EGC.

4.
RSC Adv ; 10(32): 18704-18714, 2020 May 14.
Article in English | MEDLINE | ID: mdl-35518336

ABSTRACT

The Fenton reaction, as an important member of the advanced oxidation processes (AOPs), has gained extensive attention in recent years. However, the practical applications of the traditional Fenton process have been restricted by the poor degradation efficiency and the rigid pH range. In this study, we report a new strategy regarding the photo-Fenton oxidation of Rhodamine B (RhB) by kaolin-FeOOH (K-Fe) catalysts with the assistance of oxalic acid. It was found that the iron-oxalate complex was formed as oxalic acid was introduced into the K-Fe catalyst system by the chelation ability of oxalate. Benefiting from the high photosensitivity of the iron-oxalate complexes, the K-Fe/oxalic acid/H2O2/visible light system exhibited excellent catalytic activity towards the degradation of RhB under the optimized reaction conditions [(K-Fe) dosage = 1.0 g L-1, initial pH = 7.2, (oxalic acid) = 1.0 mM, (H2O2) = 0.5 mM], and its reaction rate constant for the degradation of RhB was 27.7 times greater than that of the K-Fe/H2O2/visible light system. More importantly, the K-Fe/oxalic acid/H2O2/visible system showed remarkable degradation efficiency over a wide pH range (3.3-10.8), which was superior to that of the traditional Fenton system. In addition, the degradation efficiency of RhB was found to remain at 94.7% after five cycles. This work is expected to provide an important approach for the application of the Fenton system.

SELECTION OF CITATIONS
SEARCH DETAIL