Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
J Acquir Immune Defic Syndr ; 96(4): 350-360, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38916429

ABSTRACT

BACKGROUND: An effective vaccine is required to end the HIV pandemic. We evaluated the safety and immunogenicity of a DNA (DNA-HIV-PT123) vaccine with low- or high-dose bivalent (TV1.C and 1086.C glycoprotein 120) subtype C envelope protein combinations, adjuvanted with MF59 or AS01B. METHODS: HIV Vaccine Trials Network (HVTN)108 was a randomized, placebo-controlled, double-blind, phase 1/2a trial conducted in the United States and South Africa. HIV-negative adults were randomly assigned to 1 of 7 intervention arms or placebo to assess DNA prime with DNA/protein/adjuvant boosts, DNA/protein/adjuvant co-administration, and low-dose protein/adjuvant regimens. HVTN111 trial participants who received an identical regimen were also included. Outcomes included safety and immunogenicity 2 weeks and 6 months after final vaccination. RESULTS: From June 2016 to July 2018, 400 participants were enrolled (N = 334 HVTN108, N = 66 HVTN111); 370 received vaccine and 30 received placebo. There were 48 grade 3 and 3 grade 4 reactogenicity events among 39/400 (9.8%) participants, and 32 mild/moderate-related adverse events in 23/400 (5.8%) participants. All intervention groups demonstrated high IgG response rates (>89%) and high magnitudes to HIV-1 Env gp120 and gp140 proteins; response rates for AS01B-adjuvanted groups approached 100%. V1V2 IgG magnitude, Fc-mediated functions, IgG3 Env response rates, and CD4+ T-cell response magnitudes and rates were higher in the AS01B-adjuvanted groups. The AS01B-adjuvanted low-dose protein elicited greater IgG responses than the higher protein dose. CONCLUSIONS: The vaccine regimens were generally well tolerated. Co-administration of DNA with AS01B-adjuvanted bivalent Env gp120 elicited the strongest humoral responses; AS01B-adjuvanted regimens elicited stronger CD4+ T-cell responses, justifying further evaluation.ClinicalTrials.gov registration: NCT02915016, registered 26 September 2016.


Subject(s)
AIDS Vaccines , Adjuvants, Immunologic , HIV Antibodies , HIV Envelope Protein gp120 , HIV Infections , HIV-1 , Polysorbates , Squalene , Vaccines, DNA , Humans , AIDS Vaccines/immunology , AIDS Vaccines/administration & dosage , AIDS Vaccines/adverse effects , Vaccines, DNA/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/adverse effects , Female , Male , Adult , Squalene/administration & dosage , Polysorbates/administration & dosage , HIV Envelope Protein gp120/immunology , Adjuvants, Immunologic/administration & dosage , HIV-1/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV Antibodies/blood , Double-Blind Method , Middle Aged , Young Adult , Adjuvants, Vaccine/administration & dosage , South Africa , Immunogenicity, Vaccine , Adolescent , United States
2.
PLoS Med ; 21(6): e1004329, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913710

ABSTRACT

BACKGROUND: Broadly neutralizing antibodies (bnAbs) are a promising approach for HIV-1 prevention. In the Antibody Mediated Prevention (AMP) trials, a CD4-binding site targeting bnAb, VRC01, administered intravenously (IV), demonstrated 75% prevention efficacy against highly neutralization-sensitive viruses but was ineffective against less sensitive viruses. VRC07-523LS is a next-generation bnAb targeting the CD4-binding site and was engineered for increased neutralization breadth and half-life. We conducted a multicenter, randomized, partially blinded Phase I clinical trial to evaluate the safety and serum concentrations of VRC07-523LS, administered in multiple doses and routes to healthy adults without HIV. METHODS AND FINDINGS: Participants were recruited between 2 February 2018 and 9 October 2018. A total of 124 participants were randomized to receive 5 VRC07-523LS administrations via IV (T1: 2.5 mg/kg, T2: 5 mg/kg, T3: 20 mg/kg), subcutaneous (SC) (T4: 2.5 mg/kg, T5: 5 mg/kg), or intramuscular (IM) (T6: 2.5 mg/kg or P6: placebo) routes at 4-month intervals. Participants and site staff were blinded to VRC07-523LS versus placebo for the IM group, while all other doses and routes were open-label. Safety data were collected for 144 weeks following the first administration. VRC07-523LS serum concentrations were measured by ELISA through Day 112 in all participants and by binding antibody multiplex assay (BAMA) thereafter in 60 participants (10 per treatment group) through Day 784. Compartmental population pharmacokinetic (PK) analyses were conducted to evaluate the VRC07-523LS serum PK. Neutralization activity was measured in a TZM-bl assay and antidrug antibodies (ADAs) were assayed using a tiered bridging assay testing strategy. Injections and infusions were well tolerated, with mild pain or tenderness reported commonly in the SC and IM groups, and mild to moderate erythema or induration reported commonly in the SC groups. Infusion reactions reported in 3 of 20 participants in the 20 mg/kg IV group. Peak geometric mean (GM) concentrations (95% confidence intervals [95% CIs]) following the first administration were 29.0 µg/mL (25.2, 33.4), 58.5 µg/mL (49.4, 69.3), and 257.2 µg/mL (127.5, 518.9) in T1-T3 with IV dosing; 10.8 µg/mL (8.8, 13.3) and 22.8 µg/mL (20.1, 25.9) in T4-T5 with SC dosing; and 16.4 µg/mL (14.7, 18.2) in T6 with IM dosing. Trough GM (95% CIs) concentrations immediately prior to the second administration were 3.4 µg/mL (2.5, 4.6), 6.5 µg/mL (5.6, 7.5), and 27.2 µg/mL (23.9, 31.0) with IV dosing; 0.97 µg/mL (0.65, 1.4) and 3.1 µg/mL (2.2, 4.3) with SC dosing, and 2.6 µg/mL (2.05, 3.31) with IM dosing. Peak VRC07-523LS serum concentrations increased linearly with the administered dose. At a given dose, peak and trough concentrations, as well as serum neutralization titers, were highest in the IV groups, reflecting the lower bioavailability following SC and IM administration. A single participant was found to have low titer ADA at a lone time point. VRC07-523LS has an estimated mean half-life of 42 days across all doses and routes (95% CI: 40.5, 43.5), over twice as long as VRC01 (15 days). CONCLUSIONS: VRC07-523LS was safe and well tolerated across a range of doses and routes and is a promising long-acting bnAb for inclusion in HIV-1 prevention regimens. TRIAL REGISTRATION: ClinicalTrials.gov/ NCT03387150 (posted on 21 December 2017).

3.
Pharmaceutics ; 16(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38794258

ABSTRACT

Monoclonal antibodies are commonly engineered with an introduction of Met428Leu and Asn434Ser, known as the LS mutation, in the fragment crystallizable region to improve pharmacokinetic profiles. The LS mutation delays antibody clearance by enhancing binding affinity to the neonatal fragment crystallizable receptor found on endothelial cells. To characterize the LS mutation for monoclonal antibodies targeting HIV, we compared pharmacokinetic parameters between parental versus LS variants for five pairs of anti-HIV immunoglobin G1 monoclonal antibodies (VRC01/LS/VRC07-523LS, 3BNC117/LS, PGDM1400/LS PGT121/LS, 10-1074/LS), analyzing data from 16 clinical trials of 583 participants without HIV. We described serum concentrations of these monoclonal antibodies following intravenous or subcutaneous administration by an open two-compartment disposition, with first-order elimination from the central compartment using non-linear mixed effects pharmacokinetic models. We compared estimated pharmacokinetic parameters using the targeted maximum likelihood estimation method, accounting for participant differences. We observed lower clearance rate, central volume, and peripheral volume of distribution for all LS variants compared to parental monoclonal antibodies. LS monoclonal antibodies showed several improvements in pharmacokinetic parameters, including increases in the elimination half-life by 2.7- to 4.1-fold, the dose-normalized area-under-the-curve by 4.1- to 9.5-fold, and the predicted concentration at 4 weeks post-administration by 3.4- to 7.6-fold. Results suggest a favorable pharmacokinetic profile of LS variants regardless of HIV epitope specificity. Insights support lower dosages and/or less frequent dosing of LS variants to achieve similar levels of antibody exposure in future clinical applications.

4.
Vaccine ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772835

ABSTRACT

BACKGROUND: Reactogenicity informs vaccine safety, and may influence vaccine uptake. We evaluated factors associated with reactogenicity in HVTN 702, a typical HIV vaccine efficacy trial with multiple doses and products. METHODS: HVTN 702, a phase 2b/3 double-blind placebo-controlled trial, randomized 5404 African participants aged 18-35 years without HIV to placebo, or ALVAC-HIV (vCP2438) at months 0, 1 and ALVAC-HIV (vCP2438) + Bivalent Subtype C gp120/MF59 at months 3, 6, 12 and 18. Using multivariate logistic regression, we evaluated associations between reactogenicity with clinical, sociodemographic and laboratory variables. RESULTS: More vaccine than placebo-recipients reported local symptoms (all p < 0.001), arthralgia (p = 0.008), chills (p = 0.012) and myalgia (p < 0.001). Reactogenicity was associated with female sex at birth (ORv = 2.50, ORp = 1.81, both p < 0.001) and geographic region. Amongst vaccine-recipients, each year of age was associated with 3 % increase in reactogenicity (OR = 1.03, p = 0.002). CONCLUSION: Vaccine receipt, female sex at birth, older age, and region may affect reactogenicity.

5.
JAMA Netw Open ; 7(5): e2412835, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38780941

ABSTRACT

Importance: SARS-CoV-2 viral load (VL) in the nasopharynx is difficult to quantify and standardize across settings, but it may inform transmission potential and disease severity. Objective: To characterize VL at COVID-19 diagnosis among previously uninfected and unvaccinated individuals by evaluating the association of demographic and clinical characteristics, viral variant, and trial with VL, as well as the ability of VL to predict severe disease. Design, Setting, and Participants: This secondary cross-protocol analysis used individual-level data from placebo recipients from 4 harmonized, phase 3 COVID-19 vaccine efficacy trials sponsored by Moderna, AstraZeneca, Janssen, and Novavax. Participants were SARS-CoV-2 negative at baseline and acquired COVID-19 during the blinded phase of the trials. The setting included the US, Brazil, South Africa, Colombia, Argentina, Peru, Chile, and Mexico; start dates were July 27, 2020, to December 27, 2020; data cutoff dates were March 26, 2021, to July 30, 2021. Statistical analysis was performed from November 2022 to June 2023. Main Outcomes and Measures: Linear regression was used to assess the association of demographic and clinical characteristics, viral variant, and trial with polymerase chain reaction-measured log10 VL in nasal and/or nasopharyngeal swabs taken at the time of COVID-19 diagnosis. Results: Among 1667 participants studied (886 [53.1%] male; 995 [59.7%] enrolled in the US; mean [SD] age, 46.7 [14.7] years; 204 [12.2%] aged 65 years or older; 196 [11.8%] American Indian or Alaska Native, 150 [9%] Black or African American, 1112 [66.7%] White; 762 [45.7%] Hispanic or Latino), median (IQR) log10 VL at diagnosis was 6.18 (4.66-7.12) log10 copies/mL. Participant characteristics and viral variant explained only 5.9% of the variability in VL. The independent factor with the highest observed differences was trial: Janssen participants had 0.54 log10 copies/mL lower mean VL vs Moderna participants (95% CI, 0.20 to 0.87 log10 copies/mL lower). In the Janssen study, which captured the largest number of COVID-19 events and variants and used the most intensive post-COVID surveillance, neither VL at diagnosis nor averaged over days 1 to 28 post diagnosis was associated with COVID-19 severity. Conclusions and Relevance: In this study of placebo recipients from 4 randomized phase 3 trials, high variability was observed in SARS-CoV-2 VL at the time of COVID-19 diagnosis, and only a fraction was explained by individual participant characteristics or viral variant. These results suggest challenges for future studies of interventions seeking to influence VL and elevates the importance of standardized methods for specimen collection and viral load quantitation.


Subject(s)
COVID-19 , Nasopharynx , SARS-CoV-2 , Viral Load , Humans , Nasopharynx/virology , Viral Load/statistics & numerical data , Male , Female , Adult , Middle Aged , COVID-19 Vaccines/therapeutic use , Randomized Controlled Trials as Topic , United States , Aged
6.
Clin Infect Dis ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598658

ABSTRACT

BACKGROUND: Although the SARS-CoV-2 vaccines are highly efficacious at preventing severe disease in the general population, current data are lacking regarding vaccine efficacy (VE) for individuals with mild immunocompromising conditions. METHODS: A post-hoc, cross-protocol analysis of participant-level data from the blinded phase of four randomized, placebo-controlled, COVID-19 vaccine phase 3 trials (Moderna, AstraZeneca, Janssen, and Novavax) was performed. We defined a "tempered immune system" (TIS) variable via a consensus panel based on medical history and medications to determine VE against symptomatic and severe COVID-19 cases in TIS participants versus non-TIS (NTIS) individuals starting at 14 days after completion of the primary series through the blinded phase for each of the four trials. An analysis of participants living with well-controlled HIV was conducted using the same methods. RESULTS: 3,852/30,351 (12.7%) Moderna participants, 3,088/29,868 (10.3%) Novavax participants, 3,549/32,380 (11.0%) AstraZeneca participants, and 5,047/43,788 (11.5%) Janssen participants were identified as having a TIS. Most TIS conditions (73.9%) were due to metabolism and nutritional disorders. Vaccination (versus placebo) significantly reduced the likelihood of symptomatic and severe COVID-19 for all participants for each trial. VE was not significantly different for TIS participants vs NTIS for either symptomatic or severe COVID-19 for each trial, nor was VE significantly different in the symptomatic endpoint for participants with HIV. CONCLUSIONS: For individuals with mildly immunocompromising conditions, there is no evidence of differences in VE against symptomatic or severe COVID-19 compared to those with non-tempered immune systems in the four COVID-19 vaccine randomized controlled efficacy trials.

8.
Clin Infect Dis ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38372392

ABSTRACT

BACKGROUND: Protein-based vaccines for COVID-19 provide a traditional vaccine platform with long-lasting protection for non-SARS-CoV-2 pathogens and may complement messenger RNA vaccines as a booster dose. While NVX-CoV2373 showed substantial early efficacy, the durability of protection has not been delineated. METHODS: The PREVENT-19 vaccine trial employed a blinded crossover design; the original placebo arm received NVX-CoV2373 after efficacy was established. Using novel statistical methods that integrate surveillance data of circulating strains with post-crossover cases, we estimated placebo-controlled vaccine efficacy and durability of NVX-CoV2373 against both pre-Delta and Delta strains of SARS-CoV-2. RESULTS: Vaccine efficacy against pre-Delta strains of COVID-19 was 89% (95% CI: 75%, 95%) and 87% (72%, 94%) at 0 and 90 days after 2 doses of NVX-CoV2373, respectively, with no evidence of waning (p=0.93). Vaccine efficacy against the Delta strain was 88% (71%, 95%), 82% (56%, 92%), and 77% (44%, 90%) at 40, 120, and 180 days, respectively, with evidence of waning (p<0.01). In sensitivity analyses, the estimated Delta vaccine efficacy at 120 days ranged from 66% (15%, 86%) to 89% (74%, 95%) per various assumptions of the surveillance data. CONCLUSION: NVX-CoV2373 has high initial efficacy against pre-Delta and Delta strains of COVID-19 with little evidence of waning for pre-Delta strains through 90 days and moderate waning against Delta strains over 180 days.

9.
Stat Med ; 43(8): 1627-1639, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38348581

ABSTRACT

Both individually and cluster randomized study designs have been used for vaccine trials to assess the effects of vaccine on reducing the risk of disease or infection. The choice between individually and cluster randomized designs is often driven by the target estimand of interest (eg, direct versus total), statistical power, and, importantly, logistic feasibility. To combat emerging infectious disease threats, especially when the number of events from one single trial may not be adequate to obtain vaccine effect estimates with a desired level of precision, it may be necessary to combine information across multiple trials. In this article, we propose a model formulation to estimate the direct, indirect, total, and overall vaccine effects combining data from trials with two types of study designs: individual-randomization and cluster-randomization, based on a Cox proportional hazards model, where the hazard of infection depends on both vaccine status of the individual as well as the vaccine status of the other individuals in the same cluster. We illustrate the use of the proposed model and assess the potential efficiency gain from combining data from multiple trials, compared to using data from each individual trial alone, through two simulation studies, one of which is designed based on a cholera vaccine trial previously carried out in Matlab, Bangladesh.


Subject(s)
Cholera Vaccines , Cholera , Humans , Randomized Controlled Trials as Topic , Cholera/prevention & control , Vaccination , Research Design
10.
medRxiv ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38260276

ABSTRACT

Background: Broadly neutralizing antibodies (bnAbs) are a promising approach for HIV-1 prevention. In the only bnAb HIV prevention efficacy studies to date, the Antibody Mediated Prevention (AMP) trials, a CD4-binding site targeting bnAb, VRC01, administered intravenously (IV), demonstrated 75% prevention efficacy against highly neutralization-sensitive viruses but was ineffective against less sensitive viruses. Greater efficacy is required before passively administered bnAbs become a viable option for HIV prevention; furthermore subcutaneous (SC) or intramuscular (IM) administration may be preferred. VRC07-523LS is a next-generation bnAb targeting the CD4-binding site and was engineered for increased neutralization breadth and half-life. Methods: Participants were recruited between 02 February 2018 and 09 October 2018. 124 healthy participants without HIV were randomized to receive five VRC07-523LS administrations via IV (T1: 2.5 mg/kg, T2: 5 mg/kg, T3: 20 mg/kg), SC (T4: 2.5 mg/kg, T5: 5 mg/kg) or IM (T6: 2.5 mg/kg or P6: placebo) routes at four-month intervals. Safety data were collected for 144 weeks following the first administration. VRC07-523LS serum concentrations were measured by ELISA after the first dose through Day 112 in all participants and by binding antibody multiplex assay (BAMA) thereafter in 60 participants (10 per treatment group) through Day 784. Compartmental population pharmacokinetic (PK) analyses were conducted to evaluate the VRC07-523LS serum pharmacokinetics. Neutralization activity was measured in a TZM-bl assay and anti-drug antibodies (ADA) were assayed using a tiered bridging assay testing strategy. Results: Injections were well-tolerated, with mild pain or tenderness reported commonly in the SC and IM groups, and mild to moderate erythema or induration reported commonly in the SC groups. Infusions were generally well-tolerated, with infusion reactions reported in 3 of 20 participants in the 20 mg/kg IV group. Peak geometric mean (GM) concentrations (95% confidence intervals) following the first administration were 29.0 µg/mL (25.2, 33.4), 58.5 µg/mL (49.4, 69.3), and 257.2 µg/mL (127.5, 518.9) in T1-T3 with IV dosing; 10.8 µg/mL (8.8, 13.3) and 22.8 µg/mL (20.1, 25.9) in T4-T5 with SC dosing; and 16.4 µg/mL (14.7, 18.2) in T6 with IM dosing. Trough GM concentrations immediately prior to the second administration were 3.4 µg/mL (2.5, 4.6), 6.5 µg/mL (5.6, 7.5), and 27.2 µg/mL (23.9, 31.0) with IV dosing; 0.97 µg/mL (0.65, 1.4) and 3.1 µg/mL (2.2, 4.3) with SC dosing, and 2.6 µg/mL (2.05, 3.31) with IM dosing. Peak VRC07-523LS serum concentrations increased linearly with the administered dose. At a given dose, peak and trough concentrations, as well as serum neutralization titres, were highest in the IV groups, reflecting the lower bioavailability following SC and IM administration. A single participant was found to have low titre ADA at a lone timepoint. VRC07-523LS has an estimated mean half-life of 42 days (95% CI: 40.5, 43.5), approximately twice as long as VRC01. Conclusions: VRC07-523LS was safe and well-tolerated across a range of doses and routes and is a promising long-acting bnAb for inclusion in HIV-1 prevention regimens.

11.
Nat Commun ; 14(1): 8299, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097552

ABSTRACT

The Antibody Mediated Prevention (AMP) trials (NCT02716675 and NCT02568215) demonstrated that passive administration of the broadly neutralizing monoclonal antibody VRC01 could prevent some HIV-1 acquisition events. Here, we use mathematical modeling in a post hoc analysis to demonstrate that VRC01 influenced viral loads in AMP participants who acquired HIV. Instantaneous inhibitory potential (IIP), which integrates VRC01 serum concentration and VRC01 sensitivity of acquired viruses in terms of both IC50 and IC80, follows a dose-response relationship with first positive viral load (p = 0.03), which is particularly strong above a threshold of IIP = 1.6 (r = -0.6, p = 2e-4). Mathematical modeling reveals that VRC01 activity predicted from in vitro IC80s and serum VRC01 concentrations overestimates in vivo neutralization by 600-fold (95% CI: 300-1200). The trained model projects that even if future therapeutic HIV trials of combination monoclonal antibodies do not always prevent acquisition, reductions in viremia and reservoir size could be expected.


Subject(s)
HIV Infections , HIV-1 , Humans , Antibodies, Neutralizing , Viral Load , HIV Antibodies , Models, Theoretical
12.
Nat Commun ; 14(1): 7813, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38016958

ABSTRACT

Broadly neutralizing monoclonal antibodies (mAbs) are being developed for HIV-1 prevention. Hence, these mAbs and licensed oral pre-exposure prophylaxis (PrEP) (tenofovir-emtricitabine) can be concomitantly administered in clinical trials. In 48 US participants (men and transgender persons who have sex with men) who received the HIV-1 mAb VRC01 and remained HIV-free in an antibody-mediated-prevention trial (ClinicalTrials.gov #NCT02716675), we conduct a post-hoc analysis and find that VRC01 clearance is 0.08 L/day faster (p = 0.005), and dose-normalized area-under-the-curve of VRC01 serum concentration over-time is 0.29 day/mL lower (p < 0.001) in PrEP users (n = 24) vs. non-PrEP users (n = 24). Consequently, PrEP users are predicted to have 14% lower VRC01 neutralization-mediated prevention efficacy against circulating HIV-1 strains. VRC01 clearance is positively associated (r = 0.33, p = 0.03) with levels of serum intestinal Fatty Acid Binding protein (I-FABP), a marker of epithelial intestinal permeability, which is elevated upon starting PrEP (p = 0.04) and after months of self-reported use (p = 0.001). These findings have implications for the evaluation of future HIV-1 mAbs and postulate a potential mechanism for mAb clearance in the context of PrEP.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Pre-Exposure Prophylaxis , Male , Adult , Humans , Tenofovir/therapeutic use , Emtricitabine/therapeutic use , HIV Infections/drug therapy , Anti-HIV Agents/therapeutic use , Antibodies, Monoclonal/therapeutic use
13.
Lancet HIV ; 10(10): e653-e662, 2023 10.
Article in English | MEDLINE | ID: mdl-37802566

ABSTRACT

BACKGROUND: Preclinical and clinical studies suggest that combinations of broadly neutralising antibodies (bnAbs) targeting different HIV envelope epitopes might be required for sufficient prevention of infection. We aimed to evaluate the dual and triple anti-HIV bnAb combinations of PGDM1400 (V2 Apex), PGT121 (V3 glycan), 10-1074 (V3 glycan), and VRC07-523LS (CD4 binding site). METHODS: In this phase 1 trial (HVTN 130/HPTN 089), adults without HIV were randomly assigned (1:1:1) to three dual-bnAb treatment groups simultaneously, or the triple-bnAb group, receiving 20 mg/kg of each antibody administered intravenously at four centres in the USA. Participants received a single dose of PGT121 + VRC07-523LS (treatment one; n=6), PGDM1400 + VRC07-523LS (treatment two; n=6), or 10-1074 + VRC07-523LS (treatment three; n=6), and two doses of PGDM1400 + PGT121 + VRC07-523LS (treatment four; n=9). Primary outcomes were safety, pharmacokinetics, and neutralising activity. Safety was determined by monitoring for 60 min after infusions and throughout the study by collecting laboratory assessments (ie, blood count, chemistry, urinalysis, and HIV), and solicited and unsolicited adverse events (via case report forms and participant diaries). Serum concentrations of each bnAb were measured by binding antibody assays on days 0, 3, 6, 14, 28, 56, 112, 168, 224, 280, and 336, and by serum neutralisation titres against Env-pseudotyped viruses on days 0, 3, 28, 56, and 112. Pharmacokinetic parameters were estimated by use of two-compartment population pharmacokinetic models; combination bnAb neutralisation titres were directly measured and assessed with different interaction models. This trial is registered with ClinicalTrials.gov, NCT03928821, and has been completed. FINDINGS: 27 participants were enrolled from July 31, to Dec 20, 2019. The median age was 26 years (range 19-50), 16 (58%) of 27 participants were assigned female sex at birth, and 24 (89%) participants were non-Hispanic White. Infusions were safe and well tolerated. There were no statistically significant differences in pharmacokinetic patterns between the dual and triple combinations of PGT121, PGDM1400, and VRC07-523LS. The median estimated elimination half-lives of PGT121, PGDM1400, 10-1074, and VRC07-523LS were 32·2, 25·4, 27·5, and 52·9 days, respectively. Neutralisation coverage against a panel of 12 viruses was greater in the triple-bnAb versus dual-bnAb groups: area under the magnitude-breadth curve at day 28 was 3·1, 2·9, 3·0, and 3·4 for treatments one to four, respectively. The Bliss-Hill multiplicative interaction model, which assumes complementary neutralisation with no antagonism or synergism among the bnAbs, best described combination bnAb titres in the dual-bnAb and triple-bnAb groups. INTERPRETATION: No pharmacokinetic interactions among the bnAbs and no loss of complementary neutralisation were observed in the dual and triple combinations. This study lays the foundation for designing future combination bnAb HIV prevention efficacy trials. FUNDING: US National Institute of Allergy and Infectious Diseases, US National Institute on Drug Abuse, US National Institute of Mental Health, and the Eunice Kennedy Shriver National Institute of Child Health and Human Development.


Subject(s)
HIV Infections , HIV-1 , Adult , Female , Humans , Middle Aged , Young Adult , Antibodies, Monoclonal , Antibodies, Neutralizing , Broadly Neutralizing Antibodies/therapeutic use , HIV Antibodies , HIV Infections/drug therapy , HIV Infections/prevention & control , Polysaccharides/therapeutic use , Male
14.
iScience ; 26(9): 107595, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37654470

ABSTRACT

Combination monoclonal broadly neutralizing antibody (bnAb) regimens are in clinical development for HIV prevention, necessitating additional knowledge of bnAb neutralization potency/breadth against circulating viruses. Williamson et al. (2021) described a software tool, Super LeArner Prediction of NAb Panels (SLAPNAP), with application to any HIV bnAb regimen with sufficient neutralization data against a set of viruses in the Los Alamos National Laboratory's Compile, Neutralize, and Tally Nab Panels repository. SLAPNAP produces a proteomic antibody resistance (PAR) score for Env sequences based on predicted neutralization resistance and estimates variable importance of Env amino acid features. We apply SLAPNAP to compare HIV bnAb regimens undergoing clinical testing, finding improved power for downstream sieve analyses and increased precision for comparing neutralization potency/breadth of bnAb regimens due to the inclusion of PAR scores of Env sequences with much larger sample sizes available than for neutralization outcomes. SLAPNAP substantially improves bnAb regimen characterization, ranking, and down-selection.

15.
Vaccine ; 41(42): 6309-6317, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37679276

ABSTRACT

BACKGROUND: An approach to a preventive HIV vaccine is induction of effective broadly neutralizing antibodies (bnAbs) and effector binding antibodies (bAbs). Preclinical studies suggest that trimeric envelope (Env) proteins may elicit nAbs, which led to the development of the recombinant gp145 subtype C Env protein (gp145 C.6980) immunogen. HVTN 122 was a Phase 1 trial that evaluated the safety, tolerability, and immunogenicity of gp145 C.6980 in adults. METHODS: Healthy, HIV-1 seronegative adults received three intramuscular injections of gp145 C.6980 with aluminum hydroxide (alum) at months 0, 2, and 6 at either 300 mcg (high dose, n = 25) or 100 mcg (low dose, n = 15), or placebo/saline (placebo, n = 5). Participants were followed for 12 months. RESULTS: Forty-five participants were enrolled. High and low doses of the study protein were well-tolerated, with mild or moderate reactogenicity commonly reported. Only one adverse event (mild injection site pruritis) in one participant (low dose) was considered product-related; there were no dose-limiting toxicities. High and low dose recipients demonstrated robust bAb responses to vaccine-matched consensus gp140 Env and subtype-matched gp120 Env proteins two weeks post-last vaccination (response rates >90 %), while no responses were detected to a heterologous subtype-matched V1V2 antigen. No significant differences were seen between high and low dose groups. Participants in both experimental arms demonstrated nAb response rates of 76.5 % to a tier 1 virus (MW9635.26), but no responses to tier 2 isolates. Env-specific CD4 + T-cell responses were elicited in 36.4 % of vaccine recipients, without significant differences between groups; no participants demonstrated CD8 + T-cell responses. CONCLUSIONS: Three doses of novel subtype C gp145 Env protein with alum were safe and well-tolerated. Participants demonstrated bAb, Env-specific CD4 + T-cell, and tier 1 nAb responses, but the regimen failed to induce tier 2 or heterologous nAb responses. CLINICAL TRIALS REGISTRATION: NCT03382418.

16.
Curr Opin HIV AIDS ; 18(6): 290-299, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37712873

ABSTRACT

PURPOSE OF REVIEW: In the past two decades, there has been an explosion in the discovery of HIV-1 broadly neutralizing antibodies (bnAbs) and associated vaccine strategies to induce them. This abundance of approaches necessitates a system that accurately and expeditiously identifies the most promising regimens. We herein briefly review the background science of bnAbs, provide a description of the first round of phase 1 discovery medicine studies, and suggest an approach to integrate these into a comprehensive HIV-1-neutralizing vaccine. RECENT FINDINGS: With recent preclinical success including induction of early stage bnAbs in mouse knockin models and rhesus macaques, successful priming of VRC01-class bnAbs with eOD-GT8 in a recent study in humans, and proof-of-concept that intravenous infusion of VRC01 prevents sexual transmission of virus in humans, the stage is set for a broad and comprehensive bnAb vaccine program. Leveraging significant advances in protein nanoparticle science, mRNA technology, adjuvant development, and B-cell and antibody analyses, the HVTN has reconfigured its HIV-1 vaccine strategy by developing the Discovery Medicine Program to test promising vaccine candidates targeting six key epitopes. SUMMARY: The HVTN Discovery Medicine program is testing multiple HIV-1-neutralizing vaccine candidates.

17.
EBioMedicine ; 96: 104799, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37738833

ABSTRACT

BACKGROUND: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. METHODS: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7-15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. FINDINGS: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05-0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01-0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. INTERPRETATION: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. FUNDING: National Institutes of Health.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , SARS-CoV-2 , United States , Vaccination
18.
JAMA Netw Open ; 6(7): e2323349, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37440227

ABSTRACT

Importance: Current data identifying COVID-19 risk factors lack standardized outcomes and insufficiently control for confounders. Objective: To identify risk factors associated with COVID-19, severe COVID-19, and SARS-CoV-2 infection. Design, Setting, and Participants: This secondary cross-protocol analysis included 4 multicenter, international, randomized, blinded, placebo-controlled, COVID-19 vaccine efficacy trials with harmonized protocols established by the COVID-19 Prevention Network. Individual-level data from participants randomized to receive placebo within each trial were combined and analyzed. Enrollment began July 2020 and the last data cutoff was in July 2021. Participants included adults in stable health, at risk for SARS-CoV-2, and assigned to the placebo group within each vaccine trial. Data were analyzed from April 2022 to February 2023. Exposures: Comorbid conditions, demographic factors, and SARS-CoV-2 exposure risk at the time of enrollment. Main Outcomes and Measures: Coprimary outcomes were COVID-19 and severe COVID-19. Multivariate Cox proportional regression models estimated adjusted hazard ratios (aHRs) and 95% CIs for baseline covariates, accounting for trial, region, and calendar time. Secondary outcomes included severe COVID-19 among people with COVID-19, subclinical SARS-CoV-2 infection, and SARS-CoV-2 infection. Results: A total of 57 692 participants (median [range] age, 51 [18-95] years; 11 720 participants [20.3%] aged ≥65 years; 31 058 participants [53.8%] assigned male at birth) were included. The analysis population included 3270 American Indian or Alaska Native participants (5.7%), 7849 Black or African American participants (13.6%), 17 678 Hispanic or Latino participants (30.6%), and 40 745 White participants (70.6%). Annualized incidence was 13.9% (95% CI, 13.3%-14.4%) for COVID-19 and 2.0% (95% CI, 1.8%-2.2%) for severe COVID-19. Factors associated with increased rates of COVID-19 included workplace exposure (high vs low: aHR, 1.35 [95% CI, 1.16-1.58]; medium vs low: aHR, 1.41 [95% CI, 1.21-1.65]; P < .001) and living condition risk (very high vs low risk: aHR, 1.41 [95% CI, 1.21-1.66]; medium vs low risk: aHR, 1.19 [95% CI, 1.08-1.32]; P < .001). Factors associated with decreased rates of COVID-19 included previous SARS-CoV-2 infection (aHR, 0.13 [95% CI, 0.09-0.19]; P < .001), age 65 years or older (aHR vs age <65 years, 0.57 [95% CI, 0.50-0.64]; P < .001) and Black or African American race (aHR vs White race, 0.78 [95% CI, 0.67-0.91]; P = .002). Factors associated with increased rates of severe COVID-19 included race (American Indian or Alaska Native vs White: aHR, 2.61 [95% CI, 1.85-3.69]; multiracial vs White: aHR, 2.19 [95% CI, 1.50-3.20]; P < .001), diabetes (aHR, 1.54 [95% CI, 1.14-2.08]; P = .005) and at least 2 comorbidities (aHR vs none, 1.39 [95% CI, 1.09-1.76]; P = .008). In analyses restricted to participants who contracted COVID-19, increased severe COVID-19 rates were associated with age 65 years or older (aHR vs <65 years, 1.75 [95% CI, 1.32-2.31]; P < .001), race (American Indian or Alaska Native vs White: aHR, 1.98 [95% CI, 1.38-2.83]; Black or African American vs White: aHR, 1.49 [95% CI, 1.03-2.14]; multiracial: aHR, 1.81 [95% CI, 1.21-2.69]; overall P = .001), body mass index (aHR per 1-unit increase, 1.03 [95% CI, 1.01-1.04]; P = .001), and diabetes (aHR, 1.85 [95% CI, 1.37-2.49]; P < .001). Previous SARS-CoV-2 infection was associated with decreased severe COVID-19 rates (aHR, 0.04 [95% CI, 0.01-0.14]; P < .001). Conclusions and Relevance: In this secondary cross-protocol analysis of 4 randomized clinical trials, exposure and demographic factors had the strongest associations with outcomes; results could inform mitigation strategies for SARS-CoV-2 and viruses with comparable epidemiological characteristics.


Subject(s)
COVID-19 , Adult , Humans , Male , Middle Aged , COVID-19/epidemiology , COVID-19 Vaccines , Demography , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , SARS-CoV-2 , Adolescent , Young Adult , Aged , Aged, 80 and over
19.
PLoS Pathog ; 19(6): e1011469, 2023 06.
Article in English | MEDLINE | ID: mdl-37384759

ABSTRACT

The VRC01 Antibody Mediated Prevention (AMP) efficacy trials conducted between 2016 and 2020 showed for the first time that passively administered broadly neutralizing antibodies (bnAbs) could prevent HIV-1 acquisition against bnAb-sensitive viruses. HIV-1 viruses isolated from AMP participants who acquired infection during the study in the sub-Saharan African (HVTN 703/HPTN 081) and the Americas/European (HVTN 704/HPTN 085) trials represent a panel of currently circulating strains of HIV-1 and offer a unique opportunity to investigate the sensitivity of the virus to broadly neutralizing antibodies (bnAbs) being considered for clinical development. Pseudoviruses were constructed using envelope sequences from 218 individuals. The majority of viruses identified were clade B and C; with clades A, D, F and G and recombinants AC and BF detected at lower frequencies. We tested eight bnAbs in clinical development (VRC01, VRC07-523LS, 3BNC117, CAP256.25, PGDM1400, PGT121, 10-1074 and 10E8v4) for neutralization against all AMP placebo viruses (n = 76). Compared to older clade C viruses (1998-2010), the HVTN703/HPTN081 clade C viruses showed increased resistance to VRC07-523LS and CAP256.25. At a concentration of 1µg/ml (IC80), predictive modeling identified the triple combination of V3/V2-glycan/CD4bs-targeting bnAbs (10-1074/PGDM1400/VRC07-523LS) as the best against clade C viruses and a combination of MPER/V3/CD4bs-targeting bnAbs (10E8v4/10-1074/VRC07-523LS) as the best against clade B viruses, due to low coverage of V2-glycan directed bnAbs against clade B viruses. Overall, the AMP placebo viruses represent a valuable resource for defining the sensitivity of contemporaneous circulating viral strains to bnAbs and highlight the need to update reference panels regularly. Our data also suggests that combining bnAbs in passive immunization trials would improve coverage of global viruses.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV Antibodies , Broadly Neutralizing Antibodies , Antibodies, Neutralizing , Polysaccharides
20.
Vaccine ; 41(33): 4899-4906, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37385888

ABSTRACT

Questions remain regarding the effect of baseline host and exposure factors on vaccine efficacy (VE) across pathogens and vaccine platforms. We report placebo-controlled data from four Phase 3 COVID-19 trials during the early period of the pandemic. This was a cross-protocol analysis of four randomized, placebo-controlled efficacy trials (Moderna/mRNA1273, AstraZeneca/AZD1222, Janssen/Ad26.COV2.S, and Novavax/NVX-CoV2373) using a harmonized design. Trials were conducted in the United States and international sites in adults ≥ 18 years of age. VE was assessed for symptomatic and severe COVID-19. We analyzed 114,480 participants from both placebo and vaccine arms, enrolled July 2020 to February 2021, with follow up through July 2021. VE against symptomatic COVID-19 showed little heterogeneity across baseline socio-demographic, clinical or exposure characteristics, in either univariate or multivariate analysis, regardless of vaccine platform. Similarly, VE against severe COVID-19 in the single trial (Janssen) with sufficient endpoints for analysis showed little evidence of heterogeneity. COVID-19 VE is not influenced by baseline host or exposure characteristics across efficacy trials of different vaccine platforms and countries when well matched to circulating virus strains. This supports use of these vaccines, regardless of platform type, as effective tools in the near term for reducing symptomatic and severe COVID-19, particularly for older individuals and those with common co-morbidities during major variant shifts. Clinical trial registration numbers: NCT04470427, NCT04516746, NCT04505722, and NCT04611802.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , COVID-19/prevention & control , Ad26COVS1 , ChAdOx1 nCoV-19 , 2019-nCoV Vaccine mRNA-1273
SELECTION OF CITATIONS
SEARCH DETAIL
...