Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Front Pediatr ; 11: 1271417, 2023.
Article in English | MEDLINE | ID: mdl-38027283

ABSTRACT

Introduction: This prospective study aimed to assess the effectiveness of a Y-shape connection device in reducing pain and bleeding in pediatric patients with indwelling catheters during urodynamic studies (UDS), while also obtaining effective results in the filling phase. Methods: A total of 45 pediatric patients with a mean age of 13 years were included, all of whom underwent both a UDS with the Y-shape connection device (Method A) and a standard UDS procedure (Method B). Results: The Y-shape connection device demonstrated similar overall urodynamic parameters compared to the standard procedure, while also resulting in significantly less bleeding (P = 0.006) and lower VAS scores during (1.12 ± 0.58 vs. 3.88 ± 1.01, P = 0.001) and after (0.12 ± 0.08 vs 2.91 ± 0.89, P = 0.001) the procedure. No adverse events were reported at the 1-month follow-up. Discussion: These findings suggest that the Y-shape connection device can effectively reduce pain and bleeding during and after UDS in pediatric patients with indwelling catheters (Dia = 8Fr), while also obtaining effective results in the filling phase. Therefore, this Y-shape connection device has a more significant value for children who require urodynamic studies and place more emphasis on filling phase parameters. Clinical trial registration: ChiCTR2300068280.

3.
J Mol Med (Berl) ; 101(8): 917-929, 2023 08.
Article in English | MEDLINE | ID: mdl-37328669

ABSTRACT

Transcription factor EB, a member of the microphthalmia-associated transcription factor (MiTF/TFE) family, is a master regulator of autophagy, lysosome biogenesis, and TAMs. Metastasis is one of the main reasons for the failure of tumor therapy. Studies on the relationship between TFEB and tumor metastasis are contradictory. On the positive side, TFEB mainly affects tumor cell metastasis via five aspects, including autophagy, epithelial-mesenchymal transition (EMT), lysosomal biogenesis, lipid metabolism, and oncogenic signaling pathways; on the negative side, TFEB mainly affects tumor cell metastasis in two aspects, including tumor-associated macrophages (TAMs) and EMT. In this review, we described the detailed mechanism of TFEB-mediated regulation of metastasis. In addition, we also described the activation and inactivation of TFEB in several aspects, including the mTORC1 and Rag GTPase systems, ERK2, and AKT. However, the exact process by which TFEB regulates tumor metastasis remains unclear in some pathways, which requires further studies.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Signal Transduction , Lysosomes/metabolism , Phosphorylation
4.
Neoplasma ; 69(6): 1303-1313, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36264773

ABSTRACT

Homeobox (HOX) genes encode proteins that function as transcription factors during embryogenesis and tumorigenesis. We have previously reported upregulation of HOXC10 in gastric cancer (GC) tissues using cDNA microarray analysis. Though the functional role of HOXC10 in GC has been briefly reported, its specific mechanism is not fully understood. We analyzed the expression of HOXC10 in GC tissues, as well as its correlation with the survival outcome. By in vitro and in vivo assays, we further investigated the role of HOXC10 on cell cycle control and proliferation. Finally, we screened potential downstream targets of HOXC10 by cDNA microarray and explored the role of HOXC10 in p21 transcriptional repression through a dual luciferase reporter and chromatin immunoprecipitation. We illustrated the upregulation of HOXC10 in GC tissues and high HOXC10 expression related to poor survival outcome. Multivariable COX regression analysis showed that HOXC10 was an independent predictor of survival (HR=1.863; 95% CI: 1.076-3.225). Functionally, HOXC10 could promote GC cell proliferation and tumor growth in nude mice. Overexpression of HOXC10 accelerated G1/S cell cycle transition, whereas knocking down HOXC10 induced cell cycle arrest at the G1 phase. Critical factors of G1/S cell cycle transition including p21, CDK2, and c-Myc, were regulated by HOXC10. Importantly, an inverse correlation between p21 and HOXC10 expression in GC cell lines and tissues was observed. HOXC10 could directly bind to the promoter region of p21 and repress its transcriptional activity. Collectively, we identified HOXC10 as a predictor of poor prognosis in GC patients, and a novel transcriptional regulator of p21 in the G1/S cell cycle transition.


Subject(s)
Genes, Homeobox , Homeodomain Proteins , Stomach Neoplasms , Animals , Mice , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice, Nude , Stomach Neoplasms/pathology , Humans
5.
J Assist Reprod Genet ; 39(8): 1901-1908, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35834089

ABSTRACT

PURPOSE: Oocyte death is a severe clinical phenotype that causes female infertility and recurrent in vitro fertilization and intracytoplasmic sperm injection failure. We aimed to identify pathogenic variants in a female infertility patient with oocyte death phenotype. METHODS: Sanger sequencing was performed to screen PANX1 variants in the affected patient. Western blot analysis was used to check the effect of the variant on PANX1 glycosylation pattern in vitro. RESULTS: We identified a novel PANX1 variant (NM_015368.4 c.86G > A, (p. Arg29Gln)) associated with the phenotype of oocyte death in a non-consanguineous family. This variant displayed an autosomal dominant inheritance pattern with reduced penetrance. Western blot analysis confirmed that the missense mutation of PANX1 (c.86G > A) altered the glycosylation pattern in HeLa cells. Moreover, the mutation effects on the function of PANX1 were weaker than recently reported variants. CONCLUSION: Our findings expand the inheritance pattern of PANX1 variants to an autosomal dominant mode with reduced penetrance and enrich the variational spectrum of PANX1. These results help us to better understand the genetic basis of female infertility with oocyte death.


Subject(s)
Infertility, Female , Connexins/genetics , Female , HeLa Cells , Heterozygote , Humans , Infertility, Female/pathology , Male , Nerve Tissue Proteins/genetics , Oocytes/pathology , Semen
6.
Am J Cancer Res ; 12(12): 5484-5499, 2022.
Article in English | MEDLINE | ID: mdl-36628286

ABSTRACT

ß-Elemene, a compound extracted from Chinese herb Curcuma wenyujin, has been demonstrated with antitumor effects in various cancers, including glioblastoma (GBM), a primary brain tumor with high morbidity and mortality. In this study, we reported a bisamino derivative of ß-Elemene, 2, 2'-((1R, 3R, 4S)-4-methyl-4-vinylcyclohexane-1, 3-diyl) bis(prop-2-en-1-amine) (compound 1), displayed a better anti-GBM effect than ß-Elemene with lower concentration. GBM cell lines (C6 and U87) were treated with compound 1 and subsequently analyzed by several assays. Compound 1 significantly inhibited the migration of C6 and U87 cells based on wound healing assay, transwell assay and inverted migration assay. Furthermore, colony formation assay, immunostaining and flow cytometry assays revealed that compound 1 significantly inhibited the proliferation of GBM cells. In addition, compound 1 induced the apoptosis of GBM cells. Mechanistically, we found Yes-associated protein (YAP) was down-regulated in compound 1-treated GBM cells, and the overexpression of YAP partially rescued the anti-GBM effects of compound 1. Finally, compound 1 suppresses the GBM growth in xenograft model through inactivation YAP signaling. Taken together, these results reveal that a novel derivative of ß-Elemene, compound 1, exhibits more potent anti-GBM activity than ß-Elemene through inactivating YAP signaling pathway, which will provide novel strategies for the treatment of GBM.

7.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33850017

ABSTRACT

Epilepsy, a common neurological disorder, is featured with recurrent seizures. Its underlying pathological mechanisms remain elusive. Here, we provide evidence for loss of neogenin (NEO1), a coreceptor for multiple ligands, including netrins and bone morphological proteins, in the development of epilepsy. NEO1 is reduced in hippocampi from patients with epilepsy based on transcriptome and proteomic analyses. Neo1 knocking out (KO) in mouse brains displays elevated epileptiform spikes and seizure susceptibility. These phenotypes were undetectable in mice, with selectively depleted NEO1 in excitatory (NeuroD6-Cre+) or inhibitory (parvalbumin+) neurons, but present in mice with specific hippocampal astrocytic Neo1 KO. Additionally, neurons in hippocampal dentate gyrus, a vulnerable region in epilepsy, in mice with astrocyte-specific Neo1 KO show reductions in inhibitory synaptic vesicles and the frequency of miniature inhibitory postsynaptic current(mIPSC), but increase of the duration of miniature excitatory postsynaptic current and tonic NMDA receptor currents, suggesting impairments in both GABAergic transmission and extracellular glutamate clearance. Further proteomic and cell biological analyses of cell-surface proteins identified GLAST, a glutamate-aspartate transporter that is marked reduced in Neo1 KO astrocytes and the hippocampus. NEO1 interacts with GLAST and promotes GLAST surface distribution in astrocytes. Expressing NEO1 or GLAST in Neo1 KO astrocytes in the hippocampus abolishes the epileptic phenotype. Taken together, these results uncover an unrecognized pathway of NEO1-GLAST in hippocampal GFAP+ astrocytes, which is critical for GLAST surface distribution and function, and GABAergic transmission, unveiling NEO1 as a valuable therapeutic target to protect the brain from epilepsy.


Subject(s)
Astrocytes/metabolism , Hippocampus/metabolism , Membrane Proteins/metabolism , Animals , Astrocytes/physiology , Biological Transport/physiology , Epilepsy/physiopathology , Epilepsy/prevention & control , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Female , Glutamic Acid/metabolism , Male , Membrane Proteins/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Seizures/metabolism , Signal Transduction , Synaptic Potentials/physiology
8.
Org Biomol Chem ; 19(3): 659-666, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33399162

ABSTRACT

A simple and efficient ligand-free Cu-catalyzed protocol for the synthesis of polysubstituted quinolines via oxidative cyclization of oxime acetates with 2-aminobenzyl alcohols at room temperature has been developed. The presented approach provides a new synthetic pathway leading to polysubstituted quinolines with good functional group tolerance under mild conditions. Moreover, this transformation can be applied for the preparation of quinolines on a gram scale. Oxime acetates serve as the internal oxidants in the reactions, thus making this method very attractive.

9.
J Ethnopharmacol ; 267: 113467, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33058923

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Herbal medicines (HMs) often exert integration effects, including synergistic, additive and antagonistic effects, in such ways that they act on multiple targets and multiple pathways on account of their multiple components. Turmeric, made from the rhizome of Curcuma longa L., is a well-known HM prescribed in the polyherbal formulas for cancer treatment in traditional Chinese medicines (TCMs). However, neither the multiple anticancer compounds of turmeric nor the integration effects of these components are fully known. AIM OF THE STUDY: This work aims to develop a systematic approach to reveal the integration effect mechanisms of multiple anticancer compounds in turmeric against prostate cancer PC3 cells. MATERIALS AND METHODS: Combination index and omics technologies were applied to profile the integration effect mechanisms of bioactive compounds in proportions naturally found in turmeric. PC3 cell line (a prostate cancer cell line) fishing and high resolution mass spectrometry were employed to screen and identify the anticancer compounds from turmeric. The combinations which contain different cell-bound compounds in natural proportions were prepared for further evaluation of anti-cancer activity by using cell viability assays, and assessment of cell apoptosis and cell cycle analysis. Combination index analysis was applied to study the integration effects of the anticancer compounds in their natural proportions. Finally, quantitative glycoproteomics/proteomics and Western blot were implemented to reveal the potential synergistic effect mechanisms of the anticancer compounds based on their natural proportions in turmeric. RESULTS: Three curcuminoids (curcumin, CUR; demethoxycurcumin, DMC; bisdemethoxycurcumin, BDMC) in turmeric were discovered and shown to possess significant synergistic anticancer activities. Combination index analysis revealed an additive effect of CUR combined with DMC or BDMC and a slight synergistic effect of DMC combined with BDMC in natural proportions in turmeric, while a combination of all three curcuminoids (CUR, DMC and BDMC) at a ratio of 1:1:1 yielded superior synergistic effects. Interestingly, the presence of BDMC and DMC are essential for synergistic effect. Glycoproteomics and proteomics demonstrated that different curcuminoids regulate various protein pathways, such as ribosome, glycolysis/gluconeogenesis, biosynthesis of amino acids, and combination of CUR + DMC + BDMC showed the most powerful effects on down-regulation of protein expression. CONCLUSIONS: Our analytical approach provides a systematic understanding of the holistic activity and integration effects of the anti-cancer compounds in turmeric and three curcuminoids of turmeric showed a synergistic effect on PC3 cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Curcuma , Diarylheptanoids/pharmacology , Glycomics , Glycoproteins/metabolism , Plant Extracts/pharmacology , Prostatic Neoplasms/drug therapy , Proteomics , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Curcuma/chemistry , Diarylheptanoids/isolation & purification , Drug Synergism , Humans , Male , PC-3 Cells , Plant Extracts/isolation & purification , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Interaction Maps , Signal Transduction
10.
Phytomedicine ; 80: 153370, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33113504

ABSTRACT

BACKGROUND: Cisplatin (DDP) is the first-in-class drug for advanced and non-targetable non-small-cell lung cancer (NSCLC). A recent study indicated that DDP could slightly induce non-apoptotic cell death ferroptosis, and the cytotoxicity was promoted by ferroptosis inducer. The agents enhancing the ferroptosis may therefore increase the anticancer effect of DDP. Several lines of evidence supporting the use of phytochemicals in NSCLC therapy. Ginkgetin, a bioflavonoid derived from Ginkgo biloba leaves, showed anticancer effects on NSCLC by triggering autophagy. Ferroptosis can be triggered by autophagy, which regulates redox homeostasis. Thus, we aimed to elucidate the possible role of ferroptosis involved in the synergistic effect of ginkgetin and DDP in cancer therapy. METHODS: The promotion of DDP-induced anticancer effects by ginkgetin was examined via a cytotoxicity assay and western blot. Ferroptosis triggered by ginkgetin in DDP-treated NSCLC was observed via a lipid peroxidation assay, a labile iron pool assay, western blot, and qPCR. With ferroptosis blocking, the contribution of ferroptosis to ginkgetin + DDP-induced cytotoxicity, the Nrf2/HO-1 axis, and apoptosis were determined via a luciferase assay, immunostaining, chromatin immunoprecipitation (CHIP), and flow cytometry. The role of ferroptosis in ginkgetin + DDP-treated NSCLC cells was illustrated by the application of ferroptosis inhibitors, which was further demonstrated in a xenograft nude mouse model. RESULTS: Ginkgetin synergized with DDP to increase cytotoxicity in NSCLC cells, which was concomitant with increased labile iron pool and lipid peroxidation. Both these processes were key characteristics of ferroptosis. The induction of ferroptosis mediated by ginkgetin was further confirmed by the decreased expression of SLC7A11 and GPX4, and a decreased GSH/GSSG ratio. Simultaneously, ginkgetin disrupted redox hemostasis in DDP-treated cells, as demonstrated by the enhanced ROS formation and inactivation of the Nrf2/HO-1 axis. Ginkgetin also enhanced DDP-induced mitochondrial membrane potential (MMP) loss and apoptosis in cultured NSCLC cells. Furthermore, blocking ferroptosis reversed the ginkgetin-induced inactivation of Nrf2/HO-1 as well as the elevation of ROS formation, MMP loss, and apoptosis in DDP-treated NSCLC cells. CONCLUSION: This study is the first to report that ginkgetin derived from Ginkgo biloba leaves promotes DDP-induced anticancer effects, which can be due to the induction of ferroptosis.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biflavonoids/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Heme Oxygenase-1/metabolism , Lung Neoplasms/drug therapy , NF-E2-Related Factor 2/metabolism , A549 Cells , Animals , Apoptosis/drug effects , Autophagy/drug effects , Biflavonoids/administration & dosage , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cisplatin/administration & dosage , ErbB Receptors/genetics , Ferroptosis/drug effects , Ginkgo biloba/chemistry , Heme Oxygenase-1/genetics , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Membrane Potential, Mitochondrial/drug effects , Mice, Nude , Plant Leaves/chemistry , Xenograft Model Antitumor Assays
11.
Reprod Biol Endocrinol ; 17(1): 75, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31506068

ABSTRACT

BACKGROUND: Although in vitro culture system has been optimized in the past few decades, the problem of few or no high quality embryos has been still not completely solved. Accordingly, fully understanding the regulatory mechanism of pre-implantation embryonic development would be beneficial to further optimize the in vitro embryo culture system. Recent studies have found the expression of c-kit in mouse embryo and its promotion effects on mouse embryonic development. However, it is unclear the expression, the role and the related molecular regulatory mechanism of c-kit in human pre-implantation embryo development. Therefore, the present study is to determine whether c-kit is expressed in human pre-implantation embryos, and to investigate the possible regulatory mechanism of c-kit signaling in the process of embryonic development. METHODS: The present study includes human immature oocytes and three pronucleus (3PN) embryos collected from 768 women (28-32 ages) undergoing IVF, and normal 2PN embryos collected from ICR mice. Samples were distributed randomly into three different experimental groups: SCF group: G-1™ (medium for culture of embryos from the pro-nucleate stage to day 3) or G-2™ (medium for culture of embryos from day3 to blastocyst stage) + HSA (Human serum album) solution + rhSCF; SCF + imanitib (c-kit inhibitor) group: G-1™ or G-2™ + HSA solution + rhSCF + imanitib; SCF + U0126 (MEK/ERK inhibitor) group: G-1™ or G-2™ + HSA solution + rhSCF + U0126; Control group: G-1™ or G-2™ + HSA solution + PBS; The rate of good quality embryos at day 3, blastulation at day 6 and good quality blastulation at day 6 were analysis. RT-PCR, western blot and immunofluorescence staining were applied to detect the target genes and proteins in samples collected from human or mice, respectively. RESULTS: c-kit was expressed ubiquitously in all human immature oocytes, 3PN embryos and 3PN blastocysts. In the experiment of human 3PN embryos, compared with other groups, SCF group showed obviously higher rate of good quality at day 3, better rate of blastocyst formation at day 6 and higher rate of good quality blastocyst formation at day 6. Furthermore, we observed a higher ETV5 expression in SCF group than that in other groups. Similar results were also found in animal experiment. Interestingly, we also found a higher phosphorylation level of MEK/ERK signal molecule in mice embryos from SCF group than those from other groups. Moreover, inhibition of MEK/ERK signaling would remarkably impeded the mice embryonic development, which might be due to the reduced ETV5 expression. CONCLUSIONS: The present study firstly revealed that c-kit signaling might promote the human pre-implantation embryonic development and blastocyst formation by up-regulating the expression of ETV5 via MEK/ERK pathway. Our findings provide a new idea for optimizing the in vitro embryo culture condition during ART program, which is beneficial to obtain high quality embryos for infertile patients.


Subject(s)
Blastocyst/metabolism , Embryo Transfer/methods , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Proto-Oncogene Proteins c-kit/genetics , Signal Transduction/genetics , Adult , Animals , DNA-Binding Proteins , Embryo Culture Techniques/methods , Embryo Implantation/genetics , Female , Humans , Mice, Inbred ICR , Pregnancy , Proto-Oncogene Proteins c-kit/metabolism , Transcription Factors
12.
Sheng Li Xue Bao ; 71(2): 327-335, 2019 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-31008493

ABSTRACT

Nonsense-mediated mRNA decay (NMD) is originally identified as a widespread mRNA surveillance machinery in degrading 'aberrant' mRNA species with premature termination codons (PTCs) rapidly, which protects the cells from the accumulation of truncated proteins. Recent studies show that NMD can also regulate the degradation of normal gene transcripts, which execute important cellular and physiological functions. Therefore, NMD is considered as a highly conserved post-transcriptional regulatory mechanism in eukaryotes. NMD modulates 3% to 20% of the transcriptome from yeast to human directly or indirectly, which is essential for various physiological processes, such as cell homeostasis, stress response, proliferation, and differentiation. NMD can regulate the level of transcripts that involves in development, and single knockout of most NMD factors has an embryonic lethal effect. NMD plays an important role in the self-renewal, differentiation of embryonic stem cells and is critical during embryonic development. In this review, we summarized the latest advances in the roles and mechanisms of NMD in embryonic development, in order to provide new ideas for the research on embryonic development and the treatment of embryonic development related diseases.


Subject(s)
Embryonic Development , Nonsense Mediated mRNA Decay , Codon, Nonsense , Humans , RNA, Messenger , Transcriptome
13.
CNS Neurosci Ther ; 24(12): 1185-1195, 2018 12.
Article in English | MEDLINE | ID: mdl-29656591

ABSTRACT

AIMS: Autophagy has been regarded as a promising therapeutic target for spinal cord injury (SCI). Erythropoietin (EPO) has been demonstrated to exhibit neuroprotective effects in the central nervous system (CNS); however, the molecular mechanisms of its protection against SCI remain unknown. This study aims to investigate whether the neuroprotective effects of EPO on SCI are mediated by autophagy via AMP-activated protein kinase (AMPK) signaling pathways. METHODS: Functional assessment and Nissl staining were used to investigate the effects of EPO on SCI. Expressions of proteins were detected by Western blot and immunohistochemistry. RESULTS: Treatment with EPO significantly reduced the loss of motor neurons and improved the functional recovery following SCI. Erythropoietin significantly enhanced the SCI-induced autophagy through activating AMPK and inactivating mTOR signaling. The inhibitor of AMPK, compound C, could block the EPO-induced autophagy and beneficial action on SCI, whereas the activator of AMPK, metformin, could mimic the effects of EPO. In the in vitro studies, EPO enhanced the hypoxia-induced autophagy in an AMPK-dependent manner. CONCLUSIONS: The AMPK-dependent induction of autophagy contributes to the neuroprotection of EPO on SCI.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy/drug effects , Erythropoietin/therapeutic use , Neuroprostanes/therapeutic use , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Animals , Cell Hypoxia/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Glucose/deficiency , Locomotion/drug effects , Male , Microtubule-Associated Proteins/metabolism , PC12 Cells , Rats , Rats, Sprague-Dawley , Recovery of Function/drug effects , Signal Transduction/drug effects
14.
World J Gastrointest Surg ; 10(2): 13-20, 2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29492186

ABSTRACT

AIM: To investigate the efficacy and safety of transcutaneous electroacupuncture (TEA) to alleviate postoperative ileus (POI) after gastrectomy. METHODS: From April 2014 to February 2017, 63 gastric cancer patients were recruited from the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China. After gastrectomy, the patients were randomly allocated to the TEA (n = 33) or control (n = 30) group. The patients in the TEA group received 1 h TEA on Neiguan (ST36) and Zusanli (PC6) twice daily in the morning and afternoon until they passed flatus. The main outcomes were hours to the first flatus or bowel movement, time to nasogastric tube removal, time to liquid and semi-liquid diet, and hospital stay. The secondary outcomes included postoperative symptom assessment and complications. RESULTS: Time to first flatus in the TEA group was significantly shorter than in the control group (73.19 ± 15.61 vs 82.82 ± 20.25 h, P = 0.038), especially for open gastrectomy (76.53 ± 14.29 vs 87.23 ± 20.75 h, P = 0.048). Bowel sounds on day 2 in the TEA group were significantly greater than in the control group (2.30 ± 2.61/min vs 1.05 ± 1.26/min, P = 0.017). Time to nasogastric tube removal in the TEA group was earlier than in the control group (4.22 ± 1.01 vs 4.97 ± 1.67 d, P = 0.049), as well as the time to liquid diet (5.0 ± 1.34 vs 5.83 ± 2.10 d, P = 0.039). Hospital stay in the TEA group was significantly shorter than in the control group (8.06 ± 1.75 vs 9.40 ± 3.09 d, P = 0.041). No significant differences in postoperative symptom assessment and complications were found between the groups. There was no severe adverse event related to TEA. CONCLUSION: TEA accelerated bowel movements and alleviated POI after open gastrectomy and shortened hospital stay.

15.
Yi Chuan ; 39(7): 630-641, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28757477

ABSTRACT

The Hippo signaling pathway, consisting of a highly conserved kinase cascade and downstream transcription co-activators YAP (Yes-associated protein)/TAZ (transcriptional coactivator with PDZ-binding motif), plays a key role in tissue homeostasis and organ size control by regulating the proliferation, differentiation and apoptosis of cells. During normal development, the precise control of neural cell numbers and spatial distributions of these neural cells is important for brain development. Recent studies have shown that the Hippo/YAP signaling pathway is actively involved in the self-renewal of neural stem cells, proliferation of neural progenitor cells, differentiation and activation of glial cells, and myelination of glial cells as well as in the development of neurological diseases. Due to its prominent role in the nervous system, it is necessary to further study on this pathway. In this review, we summarize the recent studies and focus on the roles and mechanisms of the Hippo/YAP signaling pathway in the nervous system, and provide insights for neural development and neural injury diseases.


Subject(s)
Nervous System Diseases/etiology , Nuclear Proteins/physiology , Protein Serine-Threonine Kinases/physiology , Signal Transduction/physiology , Transcription Factors/physiology , Animals , Cell Cycle Proteins , Cell Differentiation , Hippo Signaling Pathway , Homeostasis , Humans , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Neuroglia/physiology
16.
Sci Rep ; 7(1): 4701, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28680155

ABSTRACT

Migration of olfactory ensheathing cells (OECs) is critical for development of olfactory system and essential for neural regeneration after OEC transplantation into nerve injury site. However, the molecular mechanisms underlying the regulation of directional migration of OECs remain unclear. In this study, we found that in migrating OECs, phosphorylated myosin light chain (p-MLC, active myosin II) displayed a polarized distribution, with the leading front exhibiting higher than soma and trailing process. Over-expression of GFP-MLC significantly reduced OEC migration. Moreover, decreasing this front-to-rear difference of myosin II activity by the frontal application of a ML-7 (myosin II inhibitors) gradient induced the collapse of leading front and reversed soma translocation of OECs, whereas, increasing this front-to-rear difference of myosin II activity by the rear application of a ML-7 or BDM gradient or the frontal application of a Caly (myosin II activator) gradient accelerated the soma translocation of OECs. Finally, myosin II as a downstream signaling of repulsive factor Slit-2 mediated the reversal of soma translocation induced by Slit-2. Taken together, these results suggest that the polarized distribution of active myosin II regulates the directional migration of OECs during spontaneous migration or upon to extracellular stimulation such as Slit-2.


Subject(s)
Myosin Light Chains/metabolism , Myosin Type II/metabolism , Neuroglia/cytology , Olfactory Bulb/cytology , Animals , Azepines/pharmacology , Cell Movement/drug effects , Cells, Cultured , Intercellular Signaling Peptides and Proteins/metabolism , Myosin Light Chains/genetics , Naphthalenes/pharmacology , Nerve Tissue Proteins/metabolism , Neuroglia/metabolism , Olfactory Bulb/metabolism , Phosphorylation , Rats
17.
Nan Fang Yi Ke Da Xue Xue Bao ; 37(5): 607-613, 2017 05 20.
Article in Chinese | MEDLINE | ID: mdl-28539282

ABSTRACT

OBJECTIVE: To investigate the effect of polycaprolactone-ascobic acid (PCL-AA) scaffolds in promoting repair of articular cartilage defects in a rabbit model. METHODS: The cartilage defects (3.5 mm in diameter and 3.0 mm in depth) were created in the trochlear groove of the bilateral knees of eight 6-month-old male New Zealand white rabbits. The rabbit models were then randomized into 3 groups to receive implantation of PCL-AA scaffolds (group A, n=8), implantation of PCL scaffolds without AA (group B, n=5), or no treatment (group C, n=3). In groups A and B, the mixture of fibrin gel (10 µg) and thrombinogen (10 µg) was injected into the defects to fix the scaffolds during the surgery. Histological analyses and quantitative assessments of defect repair were conducted at 6 and 12 weeks after implantation of the scaffold. RESULTS: At 6 weeks after scaffold implantation, macroscopic observation showed better filling of the cartilage defects in group A than in group B, while no obvious defect repair was observed in group C. The rabbits in group A showed a significant improvement of the Wakitani score than those in group B (4.05∓1.11 vs 7.05∓0.98, P<0.05). HE staining revealed the presence of newly generated cells in and around the PCL-AA scaffolds without inflammatory cells. Safranin O staining showed a significantly greater ECM of the newly regenerated tissue in groups A and B than in group C (P<0.05), and the volume of the regenerated cartilage and cells was significantly greater in group A than in group B (P<0.05). Samples harvested at 12 weeks showed more hyalione-like cartilage formation than that at 6 weeks in group A. CONCLUSION: PCL-AA scaffolds have a good biocompatibility and promotes the healing of articular cartilage defects. Adding ascorbic acid into PCL scaffolds better promotes cartilage formation in terms of both quantity and quality of the regenerated tissues. PCL-AA scaffolds can serve as a promising biomaterial to promote the regeneration of articular cartilage using tissue engineering techniques.


Subject(s)
Cartilage, Articular/pathology , Regeneration , Tissue Engineering , Tissue Scaffolds , Animals , Ascorbic Acid , Male , Polyesters , Rabbits , Random Allocation
18.
Medicine (Baltimore) ; 96(11): e6375, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28296779

ABSTRACT

The mortality rate caused by organophosphate (OP) poisoning is still high, even the standard treatment such as atropine and oxime improves a lot. To search for alternative therapies, this study was aimed to investigate the effects of packed red blood cell (RBC) transfusion in acute OP poisoning, and compare the therapeutic effects of RBCs at different storage times.Patients diagnosed with OP poisoning were included in this prospective study. Fresh RBCs (packed RBCs stored less than 10 days) and longer-storage RBCs (stored more than 10 days but less than 35 days) were randomly transfused or not into OP poisoning patients. Cholinesterase (ChE) levels in blood, atropine usage and durations, pralidoxime durations were measured.We found that both fresh and longer-storage RBCs (200-400 mL) significantly increased blood ChE levels 6 hours after transfusion, shortened the duration for ChE recovery and length of hospital stay, and reduced the usage of atropine and pralidoxime. In addition, fresh RBCs demonstrated stronger therapeutic effects than longer-storage RBCs.Packed RBCs might be an alternative approach in patients with OP poisoning, especially during early stages.


Subject(s)
Erythrocyte Transfusion/methods , Organophosphate Poisoning/therapy , Acute Disease , Atropine/therapeutic use , Cholinesterase Reactivators/therapeutic use , Cholinesterases/blood , Female , Gastric Lavage , Humans , Male , Organophosphate Poisoning/drug therapy , Pralidoxime Compounds/therapeutic use , Prospective Studies , Time Factors
19.
Reprod Sci ; 24(11): 1544-1550, 2017 11.
Article in English | MEDLINE | ID: mdl-28285567

ABSTRACT

Stem cell factor (SCF), which is derived from granulosa cells (GCs), plays a key role in the process of follicular development and oocyte maturation. The present study aimed to explore whether the levels of SCF in follicular fluid (FF) and GCs can be used as a potential marker for predicting oocyte developmental potential. Follicular fluid and GC samples from 150 female patients undergoing intracytoplasmic sperm injection were collected in this study. The SCF concentrations in FFs and SCF messenger RNA (mRNA) in GCs were evaluated by using enzyme-linked immunosorbent assay and real-time polymerase chain reaction, respectively. The results showed that the levels of SCF protein and mRNA were significantly associated with oocyte maturation, normal fertilization, cleavage, and embryo quality. Moreover, the levels of SCF protein and mRNA in pregnancy group were also higher than those in the nonpregnancy group. The cutoff value of SCF in FF for predicting high-quality embryo was 1.346, with a sensitivity of 57.8% and a specificity of 72.4%, and the cutoff value of SCF in GCs for predicting high-quality embryo was 6.650, with a sensitivity of 64.4% and a specificity of 78.1%. In conclusion, our results showed a positive and statistically significant relationship between SCF level and oocyte maturation, normal fertilization, cleavage, embryo quality, and clinical pregnancy. Therefore, the levels of SCF in FF and GCs might be considered as a new marker for predicting oocyte developmental potential.


Subject(s)
Embryonic Development/physiology , Fertilization in Vitro/methods , Follicular Fluid/metabolism , Granulosa Cells/metabolism , Oogenesis/physiology , Stem Cell Factor/metabolism , Adult , Biomarkers/metabolism , Embryo Transfer/methods , Female , Humans , Oocytes/growth & development , Oocytes/metabolism , Pregnancy , Sperm Injections, Intracytoplasmic/methods
20.
Chem Commun (Camb) ; 52(84): 12426-12429, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27711326

ABSTRACT

Ozonolysis of aromatic abietane (+)-carnosic acid (4) is used to create an important intermediate in an enantiomerically pure form, resulting in a simple, concise, readily scalable, and asymmetric synthesis of (-)-antrocin (1). This strategy not only provides an efficient approach to (-)-antrocin (1) synthesis but can also be readily adopted for the syntheses of optically pure (+)-asperolide C (2) and (-)-trans-ozic acid (3) from the naturally abundant aromatic abietanes (+)-podocarpic acid (5) and (+)-dehydroabietic acid (6). The strategy presented here is an example of the use of naturally occurring aromatic abietanes as a chiral pool and offers an account of the asymmetric synthesis of terpenoids.

SELECTION OF CITATIONS
SEARCH DETAIL
...