Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
ACS Appl Mater Interfaces ; 16(12): 15372-15382, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38494605

ABSTRACT

Electromagnetic interference (EMI) shielding and infrared stealth technologies are essential for military and civilian applications. However, it remains a significant challenge to integrate various functions efficiently into a material efficiently. Herein, a minimalist strategy to fabricate multifunctional phase change organohydrogels (PCOHs) was proposed, which were fabricated from polyacrylamide (PAM) organohydrogels, MXene/PEDOT:PSS hybrid fillers, and sodium sulfate decahydrate (Na2SO4·10H2O, SSD) via one-step photoinitiation strategies. PCOHs with a high enthalpy value (130.7 J/g) and encapsulation rate (98%) could adjust the temperature by triggering a phase change of SSD, which can hide infrared radiation to achieve medium-low temperature infrared stealth. In addition, the PCOH-based sensor has good strain sensing ability due to the incorporation of MXene/PEDOT:PSS and can precisely monitor human movement. Remarkably, benefiting from the electron conduction of the three-dimensional conductive network and the ion conduction of the hydrogel, the EMI shielding efficiency (k) of PCOHs can reach 99.99% even the filler content as low as 1.8 wt %. Additionally, EMI shielding, infrared stealth, and sensing-integrated PCOHs can be adhered to arbitrary targets due to their excellent flexibility and adaptability. This work offers a promising pathway for fabricating multifunctional phase change materials, which show great application prospects in military and civilian fields.

2.
Ying Yong Sheng Tai Xue Bao ; 23(6): 1728-32, 2012 Jun.
Article in Chinese | MEDLINE | ID: mdl-22937667

ABSTRACT

Soil loss prediction models such as universal soil loss equation (USLE) and its revised universal soil loss equation (RUSLE) are the useful tools for risk assessment of soil erosion and planning of soil conservation at regional scale. To make a rational estimation of vegetation cover and management factor, the most important parameters in USLE or RUSLE, is particularly important for the accurate prediction of soil erosion. The traditional estimation based on field survey and measurement is time-consuming, laborious, and costly, and cannot rapidly extract the vegetation cover and management factor at macro-scale. In recent years, the development of remote sensing technology has provided both data and methods for the estimation of vegetation cover and management factor over broad geographic areas. This paper summarized the research findings on the quantitative estimation of vegetation cover and management factor by using remote sensing data, and analyzed the advantages and the disadvantages of various methods, aimed to provide reference for the further research and quantitative estimation of vegetation cover and management factor at large scale.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Models, Theoretical , Plant Development , Soil/chemistry , Environmental Monitoring , Remote Sensing Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...