Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38784969

ABSTRACT

The effective coupling of photoinduced alcohol oxidation and water reduction may economically produce hydrogen (H2) from water, which is of great significance in solving the current energy crisis. This study discloses that decatungstate (DT) and especially Ni2+ions-doped DTs are active for the photoreaction of benzyl alcohol with H2O, and under 48 h of violet light illumination, the best 1%Ni-DT yields ca. 86.1% benzoic acid and a 4.65 h-1 H2 generation efficiency (turnover frequency, TOF). Also, 1%Ni-DT is efficient for the photoredox coupling reaction of aliphatic and especially aromatic primary/secondary alcohols with water. A series of characterizations support that the doubled-reduced H2DT produced from the photoreaction plays a key role in water reduction to H2, which is accelerated by the doped Ni2+. In particular, it and the derived Ni3+ may construct a Z-type catalyst for water overall splitting, thereby hoisting the acid yield and H2 amount in the later stage of the photoreaction.

2.
RSC Adv ; 14(12): 8204-8213, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38469190

ABSTRACT

Currently, additively efficient flame retardants are being developed to enhance the smoke suppression, flame retardancy, and thermal properties of composite materials. To this end, the current study designed and prepared a novel P/N/Si/Zn-containing organic-inorganic hybrid denoted as APHZ. Its inorganic part was 2-methylimidazole zinc salt (ZIF-8), which improved its smoke suppression and catalytic carbonization. The organic part (P/N/Si-containing compound) promoted its flame retardancy and interfacial compatibility between APHZ and epoxy resin (EP). The test results revealed that EP/APHZ-3 composites achieved a V-0 rating and a notable LOI value of 30.7% when introducing 3 wt% APHZ into the EP matrix. Cone calorimetry tests (CCT) further demonstrated that the average heat release rate (av-HRR), total smoke production (TSP), and CO production (COP) of EP/APHZ-3 were reduced by 23.3%, 14.0%, and 21.1%, respectively. Meanwhile, the char residual was increased by 60.6%, as compared to pure EP. Furthermore, the flame-retardant mechanism of EP/APHZ composites was investigated by the XPS, TG-FTIR, and Raman spectroscopy techniques. The observed synergistic effect of the imidazole skeleton ZIF-8 and P/N/Si-containing compound in APHZ facilitated the generation of a dense multi-element char layer, with the condensed phase flame-retardant mechanism playing a dominant role. These findings contribute to developing and designing high-performance flame-retardant EP.

3.
Plant Commun ; 5(5): 100836, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38327059

ABSTRACT

RNA cytidine-to-uridine editing is essential for plant organellar gene expression. Pentatricopeptide repeat (PPR)-E+ proteins have been proposed to bind to target sites and recruit the cytidine deaminase AtDYW2, facilitated by AtNUWA. Here we analyze the function of ZmNUWA, ZmDYW2A, and ZmDYW2B and their relationships with other editing factors in maize. The zmdyw2a and zmdyw2b single mutants are normal, but the zmdyw2a::zmdyw2b and zmnuwa mutants are severely arrested in seed development. ZmNUWA, ZmDYW2A, and ZmDYW2B are dual localized in mitochondria and plastids. Loss of ZmNUWA decreases the editing at 99 mitochondrial sites and 8 plastid sites. Surprisingly, loss of ZmDYW2A:ZmDYW2B affects almost the same set of sites targeted by PPR-E+ proteins. ZmNUWA interacts with ZmDYW2A and ZmDYW2B, suggesting that ZmNUWA recruits ZmDYW2A/2B in the editing of PPR-E+-targeted sites in maize. Further protein interaction analyses show that ZmNUWA and ZmDYW2A/2B interact with ZmMORF1, ZmMORF8, ZmMORF2, and ZmMORF9 and that ZmOZ1 interacts with ZmORRM1, ZmDYW2A, ZmDYW2B, ZmMORF8, and ZmMORF9. These results suggest that the maize mitochondrial PPR-E+ editosome contains PPR-E+, ZmDYW2A/2B, ZmNUWA, and ZmMORF1/8, whereas the plastid PPR-E+ editosome is composed of PPR-E+, ZmDYW2A/2B, ZmNUWA, ZmMORF2/8/9, ZmORRM1, and ZmOZ1.


Subject(s)
Mitochondria , Plant Proteins , Plastids , RNA Editing , Zea mays , Zea mays/genetics , Zea mays/metabolism , Plastids/metabolism , Plastids/genetics , Mitochondria/metabolism , Mitochondria/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
4.
Dev Cell ; 59(3): 384-399.e5, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38198890

ABSTRACT

Different types of cells uptake fatty acids in response to different stimuli or physiological conditions; however, little is known about context-specific regulation of fatty acid uptake. Here, we show that muscle injury induces fatty acid uptake in muscle stem cells (MuSCs) to promote their proliferation and muscle regeneration. In humans and mice, fatty acids are mobilized after muscle injury. Through CD36, fatty acids function as both fuels and growth signals to promote MuSC proliferation. Mechanistically, injury triggers the translocation of CD36 in MuSCs, which relies on dynamic palmitoylation of STX11. Palmitoylation facilitates the formation of STX11/SNAP23/VAMP4 SANRE complex, which stimulates the fusion of CD36- and STX11-containing vesicles. Restricting fatty acid supply, blocking fatty acid uptake, or inhibiting STX11 palmitoylation attenuates muscle regeneration in mice. Our studies have identified a critical role of fatty acids in muscle regeneration and shed light on context-specific regulation of fatty acid sensing and uptake.


Subject(s)
Fatty Acids , Lipoylation , Muscle, Skeletal , Qa-SNARE Proteins , Regeneration , Animals , Humans , Mice , Biological Transport , CD36 Antigens/metabolism , Cell Membrane/metabolism , Fatty Acids/metabolism , Muscle, Skeletal/injuries , Muscle, Skeletal/physiology , Qa-SNARE Proteins/metabolism
5.
BMC Genomics ; 24(1): 786, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110864

ABSTRACT

BACKGROUND: Cymbidium sinense is an orchid that is typically used as a potted plant, given its high-grade ornamental characteristics, and is most frequently distributed in China and SE Asia. The inability to strictly regulate flowering in this economically important potted and cut-flower orchid is a bottleneck that limits its industrial development. Studies on C. sinense flowering time genes would help to elucidate the mechanism regulating flowering. There are very few studies on the genetic regulation of flowering pathways in C. sinense. Photoperiod significantly affects the flowering of C. sinense, but it was unknown how the CONSTANS gene family is involved in regulating flowering. RESULTS: In this study, eight CONSTANS-like genes were identified and cloned. They were divided into three groups based on a phylogenetic analysis. Five representative CsCOL genes (CsCOL3/4/6/8/9) were selected from the three groups to perform expression characterization and functional study. CsCOL3/4/6/8/9 are nucleus-localized proteins, and all five CsCOL genes were expressed in all organs, mainly in leaves followed by sepals. The expression levels of CsCOL3/4 (group I) were higher in all organs than other CsCOL genes. Developmental stage specific expression revealed that the expression of CsCOL3/4/9 peaked at the initial flowering stage. In contrast, the transcript level of CsCOL6/8 was highest at the pedicel development stage. Photoperiodic experiments demonstrated that the transcripts of the five CsCOL genes exhibited distinct diurnal rhythms. Under LD conditions, the overexpression of CsCOL3/4 promoted early flowering, and CsCOL6 had little effect on flowering time, whereas CsCOL8 delayed flowering of Arabidopsis thaliana. However, under SD conditions, overexpression of CsCOL4/6/8 promoted early flowering and the rosette leaves growth, and CsCOL3 induced flower bud formation in transgenic Arabidopsis. CONCLUSION: The phylogenetic analysis, temporal and spatial expression patterns, photoperiodic rhythms and functional study indicate that CsCOL family members in C. sinense were involved in growth, development and flowering regulation through different photoperiodic pathway. The results will be useful for future research on mechanisms pertaining to photoperiod-dependent flowering, and will also facilitate genetic engineering-based research that uses Cymbidium flowering time genes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phylogeny , Photoperiod , Circadian Rhythm , Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Flowers , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factors/metabolism
6.
Analyst ; 148(23): 6120-6129, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37929744

ABSTRACT

The overuse and abuse of antibiotics have led to increased pollution in water environments. Thus, it is crucial to develop a rapid, high-frequency, and cost-effective method for on-site detection of antibiotics. In this regard, a reusable fiber-embedded microfluidic chip was constructed by combining a microfluidic chip with a functionalized fiber bioprobe that served as both a biorecognition element and an optical transducer. The fiber-embedded microfluidic chip enabled the quantitative detection of kanamycin (KANA) by integrating a portable all-fiber evanescent wave fluorescence detection device. Under optimized conditions, quantitative KANA detection was achieved with a detection limit of 0.03 µg L-1 and a linear detection range of 0.21-10.3 µg L-1. The accurate detection of KANA in various water samples can be completed within 25 min without pretreatment. The functionalized fiber-embedded microfluidic chip could be reused more than 200 times without significant performance loss. To demonstrate its suitability for practical applications, the fiber-embedded microfluidic chip was used to investigate KANA residues in surface waters obtained from the Qinghe River in Beijing, China. The results were compared with those of a traditional enzyme-linked immunosorbent assay, which showed a high correlation. Compared to conventional optical microfluidic chips, the proposed fiber-embedded microfluidic chip has several advantages, including its ease of use, miniaturization, cost-effectiveness, reusability, and high flexibility. It is an ideal alternative for rapid, sensitive on-site detection of antibiotics and other trace substances in environmental, food, and medical fields.


Subject(s)
Kanamycin , Microfluidics , Anti-Bacterial Agents , Environmental Pollution , Water
7.
Molecules ; 28(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37298763

ABSTRACT

One of the current challenges in the development of flame retardants is the preparation of an environmentally friendly multi-element synergistic flame retardant to improve the flame retardancy, mechanical performance, and thermal performance of composites. This study synthesized an organic flame retardant (APH) using (3-aminopropyl) triethoxysilane (KH-550), 1,4-phthalaadehyde, 1,5-diaminonaphthalene, and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) as raw materials, through the Kabachnik-Fields reaction. Adding APH to epoxy resin (EP) composites could greatly improve their flame retardancy. For instance, UL-94 with 4 wt% APH/EP reached the V-0 rating and had an LOI as high as 31.2%. Additionally, the peak heat release rate (PHRR), average heat release rate (AvHRR), total heat release (THR), and total smoke produced (TSP) of 4% APH/EP were 34.1%, 31.8%, 15.2%, and 38.4% lower than EP, respectively. The addition of APH improved the mechanical performance and thermal performance of the composites. After adding 1% APH, the impact strength increased by 15.0%, which was attributed to the good compatibility between APH and EP. The TG and DSC analyses revealed that the APH/EP composites that incorporated rigid naphthalene ring groups had higher glass transition temperatures (Tg) and a higher amount of char residue (C700). The pyrolysis products of APH/EP were systematically investigated, and the results revealed that flame retardancy of APH was realized by the condensed-phase mechanism. APH has good compatibility with EP, excellent thermal performance, enhanced mechanical performance and rational flame retardancy, and the combustion products of the as-prepared composites complied with the green and environmental protection standards which are also broadly applied in industry.


Subject(s)
Epoxy Resins , Flame Retardants , Smoke , Naphthalenes
8.
Plant Cell ; 35(1): 529-551, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36200865

ABSTRACT

RNA C-to-U editing in organelles is essential for plant growth and development; however, the underlying mechanism is not fully understood. Here, we report that pentatricopeptide repeat (PPR)-E subclass proteins carry out RNA C-to-U editing by recruiting the trans deaminase PPR motifs, coiled-coil, and DYW domain-containing protein 1 (PCW1) in maize (Zea mays) mitochondria. Loss-of-function of bZIP and coiled-coil domain-containing PPR 1 (bCCP1) or PCW1 arrests seed development in maize. bCCP1 encodes a bZIP and coiled-coil domain-containing PPR protein, and PCW1 encodes an atypical PPR-DYW protein. bCCP1 is required for editing at 66 sites in mitochondria and PCW1 is required for editing at 102 sites, including the 66 sites that require bCCP1. The PCW1-mediated editing sites are exclusively associated with PPR-E proteins. bCCP1 interacts with PCW1 and the PPR-E protein Empty pericarp7 (EMP7). Two multiple organellar RNA editing factor (MORF) proteins, ZmMORF1 and ZmMORF8, interact with PCW1, EMP7, and bCCP1. ZmMORF8 enhanced the EMP7-PCW1 interaction in a yeast three-hybrid assay. C-to-U editing at the ccmFN-1553 site in maize required EMP7, bCCP1, and PCW1. These results suggest that PPR-E proteins function in RNA editing by recruiting the trans deaminase PCW1 and bCCP1, and MORF1/8 assist this recruitment through protein-protein interactions.


Subject(s)
RNA Editing , Zea mays , Zea mays/metabolism , RNA Editing/genetics , Mitochondria/genetics , Mitochondria/metabolism , Organelles/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , RNA
9.
Front Plant Sci ; 12: 693272, 2021.
Article in English | MEDLINE | ID: mdl-34394147

ABSTRACT

The conversion of cytidines to uridines (C-to-U) at specific sites in mitochondrial and plastid transcripts is a post-transcriptional processing event that is important to the expression of organellar genes. Pentatricopeptide repeat (PPR) proteins are involved in this process. In this study, we report the function of a previously uncharacterized PPR-DYW protein, Empty pericarp17 (EMP17), in the C-to-U editing and kernel development in maize. EMP17 is targeted to mitochondria. The loss-function of EMP17 arrests maize kernel development, abolishes the editing at ccmF C -799 and nad2-677 sites, and reduces the editing at ccmF C -906 and -966 sites. The absence of editing causes amino acid residue changes in CcmFC-267 (Ser to Pro) and Nad2-226 (Phe to Ser), respectively. As CcmFC functions in cytochrome c (Cytc) maturation, the amount of Cytc and Cytc 1 protein is drastically reduced in emp17, suggesting that the CcmFC-267 (Ser to Pro) change impairs the CcmFC function. As a result, the assembly of complex III is strikingly decreased in emp17. In contrast, the assembly of complex I appears less affected, suggesting that the Nad2-226 (Phe to Ser) change may have less impact on Nad2 function. Together, these results indicate that EMP17 is required for the C-to-U editing at several sites in mitochondrial transcripts, complex III biogenesis, and seed development in maize.

SELECTION OF CITATIONS
SEARCH DETAIL
...