Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 18: 1380150, 2024.
Article in English | MEDLINE | ID: mdl-38560044

ABSTRACT

Background: The wheelchair is a widely used rehabilitation device, which is indispensable for people with limited mobility. In the process of using a wheelchair, they often face the situation of sitting for a long time, which is easy to cause fatigue of the waist muscles of the user. Therefore, this paper hopes to provide more scientific guidance and suggestions for the daily use of wheelchairs by studying the relationship between the development of muscle fatigue and sitting posture. Methods: First, we collected surface Electromyography (sEMG) of human vertical spine muscle and analyzed it in the frequency domain. The obtained Mean Power Frequency (MPF) was used as the dependent variable. Then, the pose information of the human body, including the percentage of pressure points, span, and center of mass as independent variables, was collected by the array of thin film pressure sensors, and analyzed by a multivariate nonlinear regression model. Results: When the centroid row coordinate of the cushion pressure point is about 16(range, 7.7-16.9), the cushion pressure area percentage is about 80%(range, 70.8%-89.7%), and the cushion pressure span range is about 27(range, 25-31), the backrest pressure point centroid row coordinate is about 15(range, 9.1-18.2), the backrest pressure area percentage is about 35%(range, 11.8%-38.7%), and the backrest pressure span range is about 16(range, 9-22). At this time, the MPF value of the subjects decreased by a small percentage, and the fatigue development of the muscles was slower. In addition, the pressure area percentage at the seat cushion is a more sensitive independent variable, too large or too small pressure area percentage will easily cause lumbar muscle fatigue. Conclusion: The results show that people should sit in the middle and back of the seat cushion when riding the wheelchair, so that the Angle of the hip joint can be in a natural state, and the thigh should fully contact the seat cushion to avoid the weight of the body concentrated on the buttocks; The back should be fully in contact with the back of the wheelchair to reduce the burden on the waist, and the spine posture can be adjusted appropriately according to personal habits, but it is necessary to avoid maintaining a chest sitting position for a long time, which will cause the lumbar spine to be in an unnatural physiological Angle and easily lead to fatigue of the waist muscles.

2.
Micromachines (Basel) ; 14(6)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37374850

ABSTRACT

At present, research on intelligent wheelchairs mostly focuses on motion control, while research on attitude-based adjustment is relatively insufficient. The existing methods for adjusting wheelchair posture generally lack collaborative control and good human-machine collaboration. This article proposes an intelligent wheelchair posture-adjustment method based on action intention recognition by studying the relationship between the force changes on the contact surface between the human body and the wheelchair and the action intention. This method is applied to a multi-part adjustable electric wheelchair, which is equipped with multiple force sensors to collect pressure information from various parts of the passenger's body. The upper level of the system converts the pressure data into the form of a pressure distribution map, extracts the shape features using the VIT deep learning model, identifies and classifies them, and ultimately identifies the action intentions of the passengers. Based on different action intentions, the electric actuator is controlled to adjust the wheelchair posture. After testing, this method can effectively collect the body pressure data of passengers, with an accuracy of over 95% for the three common intentions of lying down, sitting up, and standing up. The wheelchair can adjust its posture based on the recognition results. By adjusting the wheelchair posture through this method, users do not need to wear additional equipment and are less affected by the external environment. The target function can be achieved with simple learning, which has good human-machine collaboration and can solve the problem of some people having difficulty adjusting the wheelchair posture independently during wheelchair use.

3.
Micromachines (Basel) ; 13(7)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35888925

ABSTRACT

Traditional wheelchairs are unable to actively sense the external environment during use and have a single control method. Therefore, this paper develops an intelligent IoT wheelchair with the three functions, as follows. (1) Occupant-wheelchair-environment multimode sensing: the PAJ7620 sensor is used to recognize gesture information, while GPS (Global Positioning System) and IMU (Inertial Measurement Unit) sensors are used to sense positioning, speed and postural information. In addition, Lidar, DHT11, and BH1750 sensors obtain environmental information such as road information, temperature and humidity and light intensity. (2) Fusion control scheme: a mobile control scheme based on rocker and gesture recognition, as well as a backrest and footrest lifting, lowering and movement control scheme based on Tencent Cloud and mobile APP (Application). (3) Human-machine interaction: the wheelchair is docked to Tencent IoT Explorer through ESP8266 WiFi module, using MQTT (Message Queuing Telemetry Transport) protocol is used to upload sensory data, while the wheelchair status can be viewed and controlled on the APP. The wheelchair designed in this paper can sense and report the status of the occupant, environment and wheelchair in real time, while the user can view the sensory data on the mobile APP and control the wheelchair using the rocker, gestures and APP.

SELECTION OF CITATIONS
SEARCH DETAIL
...