Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(6): 4757-4781, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38466654

ABSTRACT

The high lethality of Staphylococcus aureus infections and the emergence of antibiotic resistance make the development of new antibiotics urgent. Our previous work identified a hit compound h1 (AF-353) as a novel Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitor. Herein, we analyzed the antimicrobial profile of h1 and performed a comprehensive structure-activity relationship (SAR) assay based on h1. The representative compound j9 exhibited potent antibacterial activity against S. aureus without cross-resistance to other antimicrobial classes. Multiple genetic and biochemical approaches showed that j9 directly binds to SaDHFR, resulting in strong inhibition of its enzymatic activity (IC50 = 0.97 nM). Additionally, j9 had an acceptable in vivo safety profile and oral bioavailability (F = 40.7%) and also showed favorable efficacy in a mouse model of methicillin-resistant S. aureus (MRSA) skin infection. Collectively, these findings identified j9 as a novel SaDHFR inhibitor with the potential to combat drug-resistant S. aureus infections.


Subject(s)
Folic Acid Antagonists , Methicillin-Resistant Staphylococcus aureus , Phenyl Ethers , Pyrimidines , Staphylococcal Infections , Animals , Mice , Staphylococcus aureus , Folic Acid Antagonists/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcal Infections/drug therapy , Microbial Sensitivity Tests
2.
J Med Chem ; 66(4): 2699-2716, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36735271

ABSTRACT

Discovery of novel antitubercular drugs is an effective strategy against drug-resistant tuberculosis (TB). Our previous study has identified LPX-16j as a novel antitubercular compound. Herein, we perform a comprehensive structure-activity relationship (SAR) based on LPX-16j, indicating that the central pyrimidine ring moiety was crucial for the antitubercular activities of its derivatives, and replacing the naphthyl group with hydrophobic substitutes was well tolerated. The representative derivative 5a exhibited potent activity against H37Ra, H37Rv, and clinical drug-resistant TB with minimum inhibitory concentration (MIC) values of 0.5-1.0 µg/mL. Meanwhile, 5a showed an acceptable safety in vivo and displayed a favorable oral bioavailability with a value of 40.7%. The differential scanning fluorescence, isothermal titration calorimetry, and molecular docking assays indicated that PknB could be one of the targets of compound 5a. Overall, this study identified 5a as a novel promising lead compound with the potential to develop candidates for the treatment of drug-resistant TB.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Molecular Docking Simulation , Antitubercular Agents/pharmacology , Structure-Activity Relationship , Pyrimidines/pharmacology , Microbial Sensitivity Tests
3.
Eur J Med Chem ; 243: 114737, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36115209

ABSTRACT

Blocking the de novo biosynthesis of pyrimidine by inhibiting human dihydroorotate dehydrogenase (hDHODH) is an effective way to suppress the proliferation of cancer cells and activated lymphocytes. Herein, eighteen teriflunomide derivatives and four ASLAN003 derivatives were designed and synthesized as novel hDHODH inhibitors based on a benzophenone scaffold. The optimal compound 7d showed a potent hDHODH inhibitory activity with an IC50 value of 10.9 nM, and displayed promising antiproliferative activities against multiple human cancer cells with IC50 values of 0.1-0.8 µM. Supplementation of exogenous uridine rescued the cell viability of 7d-treated Raji and HCT116 cells. Meanwhile, 7d significantly induced cell cycle S-phase arrest in Raji and HCT116 cells. Furthermore, 7d exhibited favorable safety profiles in mice and displayed effective antitumor activities with tumor growth inhibition (TGI) rates of 58.3% and 42.1% at an oral dosage of 30 mg/kg in Raji and HCT116 cells xenograft models, respectively. Taken together, these findings provide a promising hDHODH inhibitor 7d with potential activities against some tumors.


Subject(s)
Antineoplastic Agents , Neoplasms , Oxidoreductases Acting on CH-CH Group Donors , Humans , Mice , Animals , Dihydroorotate Dehydrogenase , Structure-Activity Relationship , Enzyme Inhibitors , Benzophenones/pharmacology , Cell Proliferation , Antineoplastic Agents/pharmacology , Cell Line, Tumor
4.
Eur J Med Chem ; 238: 114489, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35640328

ABSTRACT

Human dihydroorotate dehydrogenase (hDHODH) is a key enzyme in the de novo synthesis pathway of pyrimidine nucleotide in cells. The moderate efficiency of teriflunomide, an approved hDHODH inhibitor for the treatment of multiple sclerosis, limited its therapeutic application of malignancy. Herein, thirty-seven novel teriflunomide derivatives with a biphenyl scaffold were designed, synthesized and evaluated. As a result, the optimal compound A37 exhibited a potent hDHODH inhibitory activity with an IC50 value of 10.2 nM, which was about 40-fold stronger than that of teriflunomide (IC50 = 407.8 nM), and showed favorable antiproliferative activities against HCT116 cells with an IC50 value of 0.3 µM. Meanwhile, A37 displayed an acceptable safety profile at an oral dosage of 400 mg/kg in the acute toxicity assay, and exhibited a promising antitumor effect with tumor growth inhibition rate of 54.4% at an oral dosage of 30 mg/kg in HCT116 xenograft model. These results indicate that A37 is an efficacious hDHODH inhibitor with potential in the treatment of colorectal carcinoma.


Subject(s)
Colorectal Neoplasms , Oxidoreductases Acting on CH-CH Group Donors , Colorectal Neoplasms/drug therapy , Crotonates , Dihydroorotate Dehydrogenase , Drug Design , Enzyme Inhibitors/pharmacology , Humans , Hydroxybutyrates , Nitriles , Structure-Activity Relationship , Toluidines
SELECTION OF CITATIONS
SEARCH DETAIL
...