Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 137(16): 2795-804, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20663819

ABSTRACT

It is widely accepted that morphogenetic gradients determine cell identity by concentration-dependent activation of target genes. How precise is each step in the gene expression process that acts downstream of morphogens, however, remains unclear. The Bicoid morphogen is a transcription factor directly activating its target genes and provides thus a simple system to address this issue in a quantitative manner. Recent studies indicate that the Bicoid gradient is precisely established in Drosophila embryos after eight nuclear divisions (cycle 9) and that target protein expression is specified five divisions later (cycle 14), with a precision that corresponds to a relative difference of Bicoid concentration of 10%. To understand how such precision was achieved, we directly analyzed nascent transcripts of the hunchback target gene at their site of synthesis. Most anterior nuclei in cycle 11 interphasic embryos exhibit efficient biallelic transcription of hunchback and this synchronous expression is specified within a 10% difference of Bicoid concentration. The fast diffusion of Bcd-EGFP (7.7 mum(2)/s) that we captured by fluorescent correlation spectroscopy in the nucleus is consistent with this robust expression at cycle 11. However, given the interruption of transcription during mitosis, it remains too slow to be consistent with precise de novo reading of Bicoid concentration at each interphase, suggesting the existence of a memorization process that recalls this information from earlier cycles. The two anterior maternal morphogens, Bicoid and Hunchback, contribute differently to this early response: whereas Bicoid provides dose-dependent positional information along the axis, maternal Hunchback is required for the synchrony of the response and is therefore likely to be involved in this memorization process.


Subject(s)
DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/metabolism , Homeodomain Proteins/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Zygote/metabolism , Animals , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Trans-Activators/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL