Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Abdom Radiol (NY) ; 46(5): 1912-1921, 2021 05.
Article in English | MEDLINE | ID: mdl-33156949

ABSTRACT

BACKGROUND: The aim of this proof-of-concept study was to show that the liver segmental volume and attenuation ratio (LSVAR) improves the detection of significant liver fibrosis on portal venous CT scans by adding the liver vein to cava attenuation (LVCA) to the liver segmental volume ratio (LSVR). MATERIAL AND METHODS: Patients who underwent portal venous phase abdominal CT scans and MR elastography (reference standard) within 3 months between 02/2016 and 05/2017 were included. The LSVAR was calculated on portal venous CT scans as LSVR*LVCA, while the LSVR represented the volume ratio between Couinaud segments I-III and IV-VIII, and the LVCA represented the density of the liver veins compared to the density in the vena cava. The LSVAR and LSVR were compared between patients with and without significantly elevated liver stiffness (based on a cutoff value of 3.5 kPa) using the Mann-Whitney U test and ROC curve analysis. RESULTS: The LSVR and LSVAR allowed significant differentiation between patients with (n = 19) and without (n = 122) significantly elevated liver stiffness (p < 0.001). However, the LSVAR showed a higher area under the curve (AUC = 0.96) than the LSVR (AUC = 0.74). The optimal cutoff value was 0.34 for the LSVR, which detected clinically increased liver stiffness with a sensitivity of 53% and a specificity of 88%. With a cutoff value of 0.67 for the LSVAR, the sensitivity increased to 95% while maintaining a specificity of 89%. CONCLUSION: The LSVAR improves the detection of significant liver fibrosis on portal venous CT scans compared to the LSVR.


Subject(s)
Elasticity Imaging Techniques , Liver Cirrhosis , Humans , Liver/diagnostic imaging , Liver/pathology , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/pathology , Portal Vein/diagnostic imaging , Tomography, X-Ray Computed
2.
Sci Rep ; 9(1): 8106, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31147588

ABSTRACT

Magnetic resonance (MR) T1 and T2* mapping allows quantification of liver relaxation times for non-invasive characterization of diffuse liver disease. We hypothesized that liver relaxation times are not only influenced by liver fibrosis, inflammation and fat, but also by air in liver segments adjacent to the lung - especially in MR imaging at 3T. A total of 161 study participants were recruited, while 6 patients had to be excluded due to claustrophobia or technically uninterpretable MR elastography. Resulting study population consisted of 12 healthy volunteers and 143 patients who prospectively underwent multiparametric MR imaging at 3T. Of those 143 patients, 79 had normal liver stiffness in MR elastography (shear modulus <2.8 kPa, indicating absence of fibrosis) and normal proton density fat fraction (PDFF < 10%, indicating absence of steatosis), defined as reference population. T1 relaxation times in these patients were significantly shorter in liver segments adjacent to the lung than in those not adjacent to the lung (p < 0.001, mean of differences 33 ms). In liver segments not adjacent to the lung, T1 allowed to differentiate significantly between the reference population and patients with steatosis and/or fibrosis (p ≤ 0.011), while there was no significant difference of T1 between the reference population and healthy volunteers. In conclusion, we propose to measure T1 relaxation times in liver segments not adjacent to the lung. Otherwise, we recommend taking into account slightly shorter T1 values in liver segments adjacent to the lung.


Subject(s)
Fatty Liver/pathology , Liver Diseases/pathology , Liver/pathology , Magnetic Resonance Imaging , Aged , Fatty Liver/diagnostic imaging , Fatty Liver/metabolism , Female , Humans , Liver/diagnostic imaging , Liver Diseases/diagnostic imaging , Liver Diseases/metabolism , Lung/diagnostic imaging , Lung/metabolism , Lung/pathology , Magnetic Resonance Spectroscopy , Male , Middle Aged , Protons , Relaxation/physiology , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL